Live-Schaltung ins Zellinnere - Wissenschaftlern am Max-Planck-Institut für Biochemie gelingt erstmals der Blick in eine intakte, lebende Eukaryotenzelle

8. November 2002

Seit über zehn Jahren arbeiten Wissenschaftler in der Abteilung Molekulare Strukturbiologie von Wolfgang Baumeister an der Entwicklung der Elektronentomographie - ein Verfahren, bei dem die Elektronenmikroskopie mit automatisierten Bildaufzeichnungsverfahren und neuer Bildanalysetechnik kombiniert wird. So konnten sie bereits in das Innere von Bakterienzellen schauen und Zellbestandteile wie Membranen und Molekülkomplexe dreidimensional darstellen. Erstmals gelang es ihnen nun auch Bilder aus dem Zellinneren eines Vielzellers, des Schleimpilzes Dictyostelium discoideum, zu präsentieren und damit den Beweis anzutreten, dass es auf diesem Wege tatsächlich möglich ist, Momentaufnahmen von Zellen höherer Organismen zu erhalten. Ihre Ergebnisse haben die Martinsrieder Forscher in der aktuellen Ausgabe von Science (8. November 2002) veröffentlicht.

Wenn Wissenschaftler die Vorgänge verstehen wollten, die in einer Zelle ablaufen, mussten sie bisher langwierige Isolationen, Reinigungen und Präparationen durchführen, um einzelne Bestandteile der Zelle sichtbar zu machen oder die Funktion der einzelnen Bestandteile in vitro, das heißt im Reagenzglas, zu untersuchen. Aus der Kenntnis der Funktionen und Strukturen einzelner Bestandteile und Organellen einer Zelle versuchten die Wissenschaftler auf die eigentlichen Abläufe in der lebenden Zelle zu schließen. Dabei mussten sie allerdings mögliche Verfälschungen ihrer Ergebnisse hinnehmen, die durch Artefakte bei der Präparation (Entwässerung, chemisches Fixieren oder Färbung) hervorgerufen werden können. Die technischen Möglichkeiten erlaubten es bisher nicht, in die lebende Zelle hinein zu schauen und Momentaufnahmen ihres Innenlebens darzustellen. Wolfgang Baumeister hat mit seinen Kollegen ein Verfahren entwickelt, mit dem es gelingt, Zellbestandteile und Molekülkomplexe in der lebenden Zelle sichtbar zu machen. Dadurch wird es jetzt erstmals möglich, die Kommunikation und die Wechselwirkungen einzelner Zellorganellen beziehungsweise Zellstrukturen in der natürlichen Umgebung im Organismus - in vivo und das heißt live - zu studieren.

Das von den Martinsrieder Wissenschaftlern entwickelte Verfahren - die Elektronentomographie - unterscheidet sich nicht prinzipiell von anderen tomographischen Bildgebungsverfahren, wie sie etwa in der Medizin (Computertomographie) angewandt werden: Von einem Objekt werden am Elektronenmikroskop Bilder aus verschiedenen Blickwinkeln und in verschiedenen Ebenen aufgenommen. Aus diesen verschiedenen zweidimensionalen Bildern lässt sich ein dreidimensionales Bild rekonstruieren. Im Gegensatz jedoch zur Computertomographie in der Medizin wird bei der Elektronentomographie das zu untersuchende Objekt im Strahl des Elektronenmikroskops gekippt, während die "Lichtquelle", also die Quelle der Elektronenstrahlen, an ihrem Platz verbleibt.

Objekte, die elektronentomographisch untersucht werden sollen, werden zunächst schockgefroren (vitrifiziert) und in amorphem Eis beobachtet. Sie sind völlig intakt; Artefakte, also Störungen durch eine Präparation, werden bei diesem Verfahren vermieden. Die natürlichen Proben sind jedoch außerordentlich strahlenempfindlich, daher versuchen die Wissenschaftler die Dauer der Bestrahlung so kurz wie möglich zu halten. Andererseits möchten die Forscher möglichst viele Bilder aus verschiedenen Winkeln aufnehmen - erst das erhöht die Qualität der 3D-Rekonstruktion, sie wird präziser. Mit ihrer automatisierten Technik ist es Baumeister und seinen Kollegen gelungen, ein Optimum an Auflösung und Qualität zu erreichen. Dabei mussten die Wissenschaftler zunächst umfangreiche Vorarbeiten leisten: So stellten sie zum Beispiel künstliche Zellen her und füllten sie mit Proteinkomplexen, die sie aus natürlichen Zellen isoliert hatten und deren Struktur bereits bekannt war. An diesen künstlichen Zellen optimieren und automatisieren die Forscher die elektronenmikroskopischen Aufnahmen und die Bildanalyse. Die theoretischen Grundlagen zur Datenbearbeitung publizierten Achilleas S. Frangakis und seine Kollegen aus der Baumeister-Abteilung in der neuesten Ausgabe der Proceedings of the National Academy of Sciences of the USA (PNAS, 29. Oktober 2002).

Bei der erstmaligen Untersuchung eines Eukaryoten (seine Zellen besitzen im Gegensatz zu Bakterien einen Zellkern), stellten die Wissenschaftler nun zu ihrem Erstaunen fest, dass eine eukaryotische Zelle nicht so dicht gepackt ist, wie ursprünglich angenommen, und dass die einzelnen Proteinkomplexe der Zelle deshalb auch gut zu visualisieren sind. Das Team mit Ohad Medalia, Igor Weber, Achilleas Frangakis, Daniela Nicastro, Günther Gerisch und Wolfgang Baumeister konnte zwischen 300 und 600 Nanometer dünne Zellregionen elektronentomographisch untersuchen (1 Nanometer sind ein Millionstel Millimeter) und dabei erstmals ein mit Ribosomen besetztes Endoplasmatisches Retikulum (raues ER) - ein Membrannetzwerk in Eukaryotenzellen, das Proteine und neue Membranen produziert - klar und deutlich in der intakten Zelle sichtbar machen.

Darüber hinaus konnten die Wissenschaftler auch ein ihnen bereits vertrautes Studienobjekt identifizieren, das 26S Proteasom, ein Proteinkomplex, der am Abbauprozess von Proteinen beteiligt ist. Baumeister hatte vor einigen Jahren zusammen mit seinen Kollegen die Struktur dieser molekularen Maschine an Exemplaren aufgeklärt, die die Wissenschaftler aus Froschzellen isoliert hatten. Sie fanden nun eine deutliche Übereinstimmung in der Struktur. Die großartigsten Bilder erhielten die Wissenschaftler jedoch von Proteinen, die das Skelett der Zelle bilden - den sogenannten Aktinfilamenten. Diese Strukturproteine durchziehen, quasi wie Fäden, das gesamte Zellinnere. Sie stabilisieren die Form der Zelle, sind für ihre Fortbewegung unerlässlich und an wesentlichen intrazellulären Transport-Prozessen beteiligt. In der aktuellen Science-Ausgabe haben die Wissenschaftler jetzt erstmals Aufnahmen dieses so genannten Cytoskeletts von Dictyostelium veröffentlicht, wie es tatsächlich in der Zelle angeordnet ist. Die Aufnahmen zeigen, dass es zwischen den einzelnen Filamenten zu Brückenbildungen kommt, dass die verschiedenen Aktinstränge in unterschiedlichen Winkeln zueinander verknüpft sind und dass sie auch mit der Zellmembran verbunden sind.

"Die Elektronentomographie eröffnet uns nun die Möglichkeit, eine vollständige Beschreibung der räumlichen Interaktionen von Proteinkomplexen in der Zelle wiederzugeben", so Baumeister. Die Erkenntnisse aus der Strukturbiologie, Zellbiologie und Enzymkinetik, die bisher an isolierten Molekülen und Zellstrukturen gewonnen wurden, können nun in der Synthese durch die Elektronentomographie zusammengeführt werden. "Unser Ziel ist es, das komplexe Modell der gesamten Zelle zu beschreiben, nicht nur die Funktionen einzelner Moleküle und Organellen, wie es bisher möglich war, sondern der gesamten Zellstrukturen. Durch die Elektronentomographie können wir Belege für Theorien liefern, die Wissenschaftler in der Vergangenheit nur anhand der Struktur der einzelnen Komponenten aufgestellt hatten."

Beide Publikationen, die in Science als auch die in PNAS, gelten als Durchbrüche in der Zellbiologie.

Originalpublikationen:

Medalia O, Weber I, Frangakis A S, Nicastro D, Gerisch G, Baumeister W (2002): Macromelcular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science, 8. Nov. 2002-11-07.

Frangakis A S, Böhm, J, Förster J., Nickell S, Nicastro D, Typke D, Hegerl R, Baumeister W (2002): Identification of Macromolecular Complexes in Cryoelectron Tomograms of Phantom Cells. PNAS 99 (22): 14153-14158. 29. Okt. 2002.

Weitere Informationen erhalten Sie von:

Eva-Maria Diehl

Max-Planck-Institut für Biochemie

Am Klopferspitz 18a

82152 Martinsried

Tel: 089 - 8578 - 2824

Fax: 089 - 8578 - 2943

diehl@biochem.mpg.de

Weitere interessante Beiträge

Zur Redakteursansicht