Superkomplex verbindet mRNA-Übersetzung und -Abbau
Strukturbiologin Elena Conti und ihr Team zeigen, dass das Ribosom, der SKI-Komplex und das Exosom einen Superkomplex bilden.
Die Boten-RNA, kurz mRNA, dient als Bauanleitung von Proteinen. Wird mRNA nicht mehr gebraucht, muss sie abgebaut werden. Direktorin Elena Conti und ihr Team vom Max-Planck-Institut für Biochemie in Martinsried bei München konnten jetzt zeigen, dass die verschiedenen molekularen Maschinen, die mRNA übersetzen und abbauen, physisch miteinander in Verbindung stehen und gemeinsam einen Superkomplex bilden. Dieser Superkomplex besteht aus drei Proteinkomplexen, einem Ribosom, dem SKI-Komplex und dem Exosom und ist Teil der zellulären Qualitätskontrolle für mRNA. Die Ergebnisse der Studie geben neue Einblicke in das mechanistische Zusammenspiel dieser Komplexe und wurden in Nature veröffentlicht.
Wie interagieren die drei großen Proteinkomplexe: das Ribosom, der SKI-Komplex und das Exosom? Mit dieser Frage befassen sich Wissenschafter*innen um Elena Conti in ihrer aktuellen Studie.
Die Funktionen der einzelnen Komplexe ist seit vielen Jahren bekannt. Ribosomen, die oft als die Proteinfabriken der Zelle bezeichnet werden, übersetzen die Boten-RNA (mRNA) in eine spezifische Aminosäuresequenz, in einem Prozess der als Translation bezeichnet wird. Dabei werden an den Ribosomen diese Aminosäuren zu Ketten verknüpft, was zur Produktion eines neuen Proteins führt.
Mithilfe des SKI-Komplexes wird die mRNA zum Exosom transportiert, wenn sie entweder nicht mehr benötigt wird oder defekt ist. Das Exosom funktioniert wie ein molekularer Schredder und der SKI-Komplex verhält sich wie eine Hand, die die mRNA in den Schredder transportiert. Im Exsosom wird die mRNA abgebaut und in ihre Grundbausteine zerlegt.
In der aktuellen Studie untersuchten jetzt die Forschenden, ob die einzelnen Protein-Komplexe isoliert arbeiten oder der mRNA-Abbau mit der Translation gekoppelt sein kann. Frühere Arbeiten der Conti-Gruppe hatten bereits gezeigt, dass der SKI-Komplex und das Exosom eng zusammenarbeiten, indem sie einen stabilen Komplex bilden. Auf dieser Grundlage und mithilfe von hochauflösenden Mikroskopietechniken haben Alexander Kögel, Achim Keidel und Kolleg*innen nun in menschlichen Zellen gezeigt, dass alle drei Protein-Komplexe sich zu einem Superkomplex zusammenlagern.
Die Wissenschaftler untersuchten zusätzlich die Bildung des Superkomplexes in einer Situation, in der die mRNA defekt ist. Normalerweise binden sich mehrere Ribosomen gleichzeitig an einen einzigen mRNA-Strang. In bestimmten Situationen, wenn die mRNA beschädigt ist, können jedoch zwei Ribosomen bei der Übersetzung der mRNA zusammenstoßen. Das Team von Conti hat diese Situation mit Hilfe von mRNA, die Kollisionen verursacht, nachgestellt. Mit diesem Aufbau konnten sie zeigen, dass diese Kollisionen den SKI-Komplex rekrutieren, der dann die mRNA zum Abbau durch das Exosom ansteuern kann.
Die hochauflösenden Strukturdaten haben den Wissenschaftlern nun gezeigt, wie die einzelnen Proteinomplexe in engem Kontakt miteinander stehen. Vergleichbar mit einer Qualitätskontrolleinheit in einer industriellen Produktionslinie haftet der SKI-Komplex in bestimmten Szenarien, in denen ein Fehler in der mRNA erkannt wird, an den Ribosomen. Die Aufgabe der Helikase im SKI-Komplex ist, die mRNA in einen linearen Strang zu entwinden. Sobald die Helikase an das Ribosom gebunden ist, kann der SKI-Komplex die mRNA extrahieren und sie an das Exosom übergeben, wo sie abgebaut wird. Dieser Prozess erfordert ein weiteres Protein, SKI7, das eine Brücke zwischen dem SKI-Komplex und dem Exosom bildet.
Dank der enormen Entwicklungen in den letzten Jahren im Bereich der Kryo-Elektronenmikroskopie und der neuen KI-basierten Software AlphaFold, die Vorhersagen über Proteinstrukturen ermöglicht, können Wissenschaftler*innen nun viel größere Proteinkomplexe untersuchen und verstehen, wie sie interagieren. Die jetzige Studie zeigt, dass alle Komponenten direkt wie einzelne Maschinenbauteile zusammenpassen. Dabei wird eine wichtige Funktion des Superkomplexes offenbart: die Verbindung zwischen der Translation einer mRNA durch das Ribosom und ihrem Abbau durch das Exosom.
Glossar
AlphaFold: ist eine Software, die künstliche Intelligenz (KI) nutzt, um die dreidimensionalen Proteinstrukturen vorherzusagen.
Aminosäuren: sind die 20 Grundbausteine der Proteine. Sie werden zu langen Aminosäureketten verknüpft, die je nach Sequenz die Struktur und damit Funktion der Proteine bestimmen.
Exosom: ist ein tonnenförmiger Komplex aus neun Proteinuntereinheiten, wobei ein zehntes exoribonukleolytisches Protein am Boden der Tonne sitzt und die Grundbausteine der mRNA, die Ribonukleotide, zerschneidet.
Kryo-Elektronenmikroskopie: griech. kryos; kalt, Kälte; Biologische Proben (z. B. gereinigte Proteine oder Zellen) werden in flüssigem Ethan schockgefroren, um die Bildung von Wasserkristallen zu verhindern und eine Konservierung unter naturnahen Bedingungen zu ermöglichen. Die Proben können dann mit Hilfe der Elektronenmikroskopie in hoher Auflösung visualisiert werden.
mRNA: Abkürzung für Boten-Ribonukleinsäure; enthält die genetische Information über den Aufbau eines Proteins. Das fadenförmige Molekül besteht aus vier Grundbausteinen, den verschiedenen Ribonukleotiden Adenin, Guanin, Cytosin und Uracil. Die Abfolge der Ribonukleotide legt die Reihenfolge der Aminosäuren fest, den Grundbausteinen der Proteine.
Ribosome: werden als „Proteinfabriken“ der Zellen bezeichnet. Hier wird die mRNA-Sequenz im Prozess der Translation zu einer Aminosäuresequenz übersetzt und zu Aminosäureketten synthetisiert.
SKI-Komplex: besteht aus vier Proteinuntereinheiten. Kann an Ribosome binden und dort mRNA aus diesen entfernen. Über eine Helikaseuntereinheit (SKI2) wird mRNA entwunden und an das Exosom weitergeleitet. SKI7 verbindet den SKI-Komplex mit dem Exosom.