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Why do we need Machine Learning in Systems Biology and
Personalized Medicine?
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Recent News: Predicting Sexual Orientation
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Recent News: Predicting Sexual Orientation

Claim that sexual orientation can be predicted (Source: Science— DOI: 10.1126/science.aad4686)

At ASHG 2015, the Vilain lab from UCLA claimed that certain methylation patterns in
the human genome are predictive for sexual orientation.

Tuck Ngun from this lab considered methylation patterns at 140,000 regions in the DNA
of 37 pairs of male identical twins who were discordant and 10 pairs who were both
homosexual.

They reported to have identified five regions in the genome where the methylation
pattern appears very closely linked to sexual orientation.

The team reached 70% prediction accuracy when splitting the discordant twin pairs into
2 groups, one for training, one for testing.
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Recent News: Predicting Sexual Orientation

Criticisms (by Ed Yong, The Atlantic)

Sample size is very small.

Ngun: “Yes, we were underpowered.”

Overfitting on the test set.

Ngun: “All models (from the very first to the final one) were built using JUST the training
data.. . . If performance was unsatisfactory, we remade the model by selecting a different set of
predictors/features/data based on information from the TRAINING set and then reevaluating
on the test set.”
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Recent News: Predicting Sexual Orientation

Criticisms (by Ed Yong, The Atlantic)

No correction for multiple testing

Ngun: “We are not testing whether each of the 6000 marks/loci are significantly associated
with sexual orientation. If we had done that, multiple testing correction would have certainly
been warranted. But we didn’t. The single test we did was to ask whether the final model we
had built was performing better than random guessing.”
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Recent News: Predicting Sexual Orientation

Lessons we should learn

1 Predicting complex traits from high-dimensional molecular data is (becoming) a reality.
Low sample size is still an important obstacle.

Roqueiro, Witteveen et al. Bioinformatics/ISMB, 2015; Sugiyama and Borgwardt, NIPS 2015

2 It is important to build predictors that generalize to unseen data and to avoid
overfitting.

Grimm et al., Human Mutation 2015

3 When searching high-dimensional spaces for higher-order associations, multiple testing
correction is an enormous problem.

Sugiyama et al., SDM 2015; Llinares-Lopez et al., Bioinformatics/ISMB 2015, KDD 2015
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Overfitting and Generalization: Deleteriousness Prediction
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Deleteriousness Prediction

Assessing the impact of missense variants

Given the availability of more and more sequencing data on individual patients, one
fundamental question to ask is: Is a variant at a particular position in the genome
deleterious?

Even when restricting ourselves to missense variants that cause an amino acid change,
one is usually left with tens of thousands of these variants.

This motivated the development of a large number of computational tools to predict the
deleteriousness of missense variants.
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Deleteriousness Prediction

Assessing the impact of missense variants

A multitude of definitions of deleteriousness, datasets and algorithms for deleteriousness
prediction (SIFT, POLYPHEN, MUTATIONTASTER, LRT, GERP, FatHMM) exists.

For the practitioner, it is extremely hard to choose among this plethora of approaches.

Our goal: To provide the cleanest and most comprehensive comparative evaluation of
different deleteriousness predictors on a wide variety of datasets (Grimm et al., Human

Mutation 2015).

We compared 10 methods on 5 widely used datasets.
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Deleteriousness Prediction

Two Major Types of Circularities

Type 1 Circularity: The common benchmark datasets used for training and testing
tools overlap to a large degree.

Type 2 Circularity: Most proteins contain only deleterious or only neutral variants. A
naive majority class vote within a protein gives (artificially) excellent results.
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Deleteriousness Prediction

Type 1 Circularity
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Deleteriousness Prediction

Comparative Evaluation

HumVar ExoVar VariBenchSelected predictSNPSelected SwissVarSelected
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C

FatHMM-W
MutationTaster-2

PolyPhen-2
MutationAssessor

CADD
SIFT

LRT
FatHMM-U

Gerp++
phyloP

Features ln(Wn), ln(Wd)
Protein Majority Vote

Potentially Type 1 Biased
Potentially Type 2 Biased

Department Biosystems Karsten Borgwardt CC-PM Retreat, Kartause Ittingen November 2, 2015 13 / 36



Deleteriousness Prediction

Fraction of ‘mixed’ proteins in VariBenchSelected

Pathogenic Only Proteins6.4%

Neutral Only Proteins 92.2% Mixed Proteins1.4%

a
Variants in Pathogenic Only Protein

37.6%

Variants in Neutral Only Proteins

57.2%

Variants in Mixed Proteins5.2%

b

]0.0,1.0[ [0.1,0.9] [0.2,0.8] [0.3,0.7] [0.4,0.6]
0

100

200

300

400

500

600

#V
ar

ia
nt

s 
in

 M
ix

ed
 P

ro
te

in
s 5.2%

2.2%

1.4% 1.1%
0.7%

c

Department Biosystems Karsten Borgwardt CC-PM Retreat, Kartause Ittingen November 2, 2015 14 / 36



Deleteriousness Prediction

Type 2 Circularity: Predictive performance versus neutral/deleterious ratio
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Deleteriousness Prediction

Impact of Circularity on Combining Predictors

HumVar ExoVar VaribenchSelected predictSNPSelected SwissVarSelected
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Deleteriousness Prediction

Conclusions

A comparative evaluation of deleteriousness prediction tools is complicated by two types
of circularity:

Type 1 circularity can only be avoided by cleanly separating training and test dataset.

Type 2 circularity can only be avoided by stratifiying training and test dataset with
respect to protein membership.

A severe complication in practice is that many authors only publish their prediction tool,
but not the features used to train the predictors. Retraining the models to ensure a
clean, circularity-free prediction is practically impossible.
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Multiple Testing Problem: Biomarker Discovery
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Biomarker Discovery as a Pattern Mining Problem

Finding groups of trait-related molecular factors

Single genetic variants, gene expression levels, protein abundancies are often not
sufficiently indicative of disease outbreak, progression or therapy outcome.

Searching for combinations of these molecular factors (patterns) creates an enormous
search space, and two inherent problems:

1 Computational level: How to efficiently search this large space?
2 Statistical level: How to properly account for testing an enormous number of hypotheses?

The vast majority of current work in this direction (e.g. Achlioptas et al., KDD 2011)
focuses on Problem 1, the computational efficiency.

But Problem 2, multiple testing, is also of fundamental importance!
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Biomarker Discovery as a Pattern Mining Problem

Feature Selection: Find features that distinguish classes of objects

Pattern Mining: Find higher-order combinations of binary features, so-called patterns,
to distinguish one class from another
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Statistical Significance and Testability

Multiple testing correction in pattern mining

The number of candidate patterns grows exponentially with the cardinality of the
pattern.

If we do not correct for multiple testing, α per cent of all candidate patterns will be false
positives.

If we do correct for multiple testing, e.g. via Bonferroni correction ( α
#tests ), then we lose

any statistical power.
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Statistical Significance and Testability

Tarone’s trick

Tarone’s insight: When working with discrete test statistics (e.g. Fisher’s exact test),
there is a minimum p-value that a given pattern can obtain, based on its total frequency.

Tarone’s trick (1990): Ignore those patterns in multiple testing correction, for which the
minimum p-value is larger than the Bonferroni-corrected significance threshold.

If the p-values are conditioned on the total marginals (e.g. in Fisher’s exact test),
Tarone’s trick does not increase the Family Wise Error rate.

Our work: We showed how to efficiently find testable hypotheses in graph mining and
association rule mining (Suygiama et al., SDM 2015, Llinares-Lopez et al., KDD 2015).
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Genetic heterogeneity

Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.

The correlation between each individual gene or variant and the phenotype may be too
weak to be detected, but the group may have have a strong correlation.

The only current way to consider genetic heterogeneity is to consider fixed groups of
variants. Genome-wide scans cause tremendous computational and statistical problems.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

C
as
es

C
o
n
tr
o
ls

0  0  0  1  0  1  0  0  1  1  0  0  0  0  1  0  0  0  0  0  1  0  1  0

 0  0  0  1  0  1  0  0  1  1  0  0  0  0  0  1  0  0  0  0  1  0  1  0

0  0  0  1  0  1  0  0  1  1  0  0  0  1  0  0  1  0  0  0  1  0  1  0

0  0  0  1  0  1  0  0  1  1  0  0  0  0  0  0  0  0  0  0  1  0  1  0

0  0  0  1  0  1  0  0  1  1  0  0  0  0  0  0  0  0  0  0  1  0  1  0

0  0  0  1  0  1  0  0  1  1  0  0  0  0  0  0  0  0  0  0  1  0  1  0

SNPs

1

1

1

0

0

0

Meta-SNP

Department Biosystems Karsten Borgwardt CC-PM Retreat, Kartause Ittingen November 2, 2015 25 / 36



FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

Our goal is to search for intervals that may exhibit genetic heterogeneity, while

allowing for arbitrary start and end points of the intervals,
properly correcting for the inherent multiple testing problem, and
retaining statistical power and computational efficiency.

We model the search as a pattern mining problem: Given an interval, an individual
contains a pattern, if it has at least one minor allele in this interval.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Finding trait-associated genome segments with at least one minor allele
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1

1

0

0

0

Meta-SNP

An interval is represented by its maximum value. The longer an interval, the more likely
it is that this maximum is 1.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Pruning criterion 1: If too many individuals have a particular pattern, the
corresponding interval is not testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Pruning criterion 2: If a pattern is too frequent to be testable, then none of the
superintervals of the corresponding interval is testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

70% (152)

18.9% (41)

6.9% (15)

4.2 % (9)

Novel Intervals

UFE ± 10kb \ LMM ± 10kb

LMM ± 10kb \ UFE ± 10kb 

LMM ± 10kb � UFE ± 10kb 

Most significant intervals would have been missed by univariate approaches (UFE and
LMM) on 21 binary phenotypes from Arabidopsis thaliana (Atwell et al., Nature 2010).
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Conclusions and Outlook

Conclusions

We can search for intervals that may exhibit genetic heterogeneity

efficiently,
without pre-defining the boundaries of intervals,
while properly correcting for multiple testing.

Outlook

Genetic heterogeneity discovery: How to extend our approach to human genetics?

In General: Machine Learning and Data Mining will gain further importance in Systems
Biology and Personalized Medicine.
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Appendix
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Mining Significant Patterns

Fisher’s exact test

Contingency Table

S = 1 S = 0

y = 1 a n1 − a n1

y = 2 x − a n − n1 − x + a n − n1

x n − x n

A popular choice is Fisher’s exact test to test whether S is overrepresented in one of the
two classes.

The common way to compute p-values for Fisher’s exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x , n1, n).

Department Biosystems Karsten Borgwardt CC-PM Retreat, Kartause Ittingen November 2, 2015 2 / 20



Mining Significant Patterns

Multiple Testing Problem

Each S and contingency table corresponds to one hypothesis that is tested.

To control the Family-Wise Error Rate (probability of detecting at least one false
positive), we have to perform multiple testing correction.

Without multiple testing correction, we will discover millions and billions of false
positives in biomarker discovery.

The classic approach is Bonferroni correction (1936), dividing the significance level α by
the number of tests m, that is, α

m .
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Mining Significant Patterns

Tarone’s approach (1990)

For a discrete test statistics T (S) for a pattern S , such as in Fisher’s exact test, there is
a minimum obtainable p-value, pmin(S).

For some S , pmin(S) > α
m . Tarone refers to them as untestable hypotheses S̄.

Tarone’s strategy: Ignore untestable hypotheses S̄ when counting the number of tests
m for Bonferroni correction.

If the p-values of the test are conditioned on the total marginals (as in Fisher’s exact
test), this does not affect the Family-Wise Error Rate.

Difficulty: There is an interdependence between m and S̄.

Department Biosystems Karsten Borgwardt CC-PM Retreat, Kartause Ittingen November 2, 2015 4 / 20



Mining Significant Patterns

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level αk .

Then the optimization problem is

min k

s. t. k ≥ m(k)
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Mining Significant Patterns

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level αk .

procedure Tarone

k := 1;
while k < m(k) do

k := k + 1;

return k
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Mining Significant Patterns

Terada’s link to frequent itemset mining (Terada et al., PNAS 2013)

For 0 ≤ x ≤ n1, the minimum p-value pmin(S) decreases monotonically with x .

One can use frequent itemset mining to find all S that are testable at level α, with
frequency ψ−1(α).

They propose to use a decremental search strategy:

procedure Terada’s decremental search (LAMP)

k := ”very large”;
while k > m(k) do

k := k − 1;
m(k) := frequent itemset mining(D, ψ−1(αk ));

return k + 1
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Example: PTC dataset (Helma et al., 2001)
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Significant Subgraph Mining (Sugyiama et al., SDM 2015)

Significant Subgraph Mining

Each object is a graph.

A pattern is a subgraph in these graphs.

Typical application in Drug Development: Find subgraphs that discriminate between
molecules with and without drug effect.

Counting all tests (= all patterns) requires exponential runtime in the number of nodes.
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Significant Subgraph Mining (Sugyiama et al., SDM 2015)

Incremental search with early stopping

procedure Incremental search with early stopping

θ := 0
repeat

θ := θ + 1; FSθ := 0;
repeat

find next frequent subgraph at frequency θ
FSθ := FSθ + 1

until (no more frequent subgraph found) or (FSθ >
α

ψ(θ) )

until FSθ ≤ α
ψ(θ)

return ψ(θ)

α
ψ(θ)

is the maximum correction factor, such that subgraphs with frequency θ can be significant at level ψ(θ).
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Significant Subgraph Mining on PTC Dataset
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Significant Subgraph Mining: Correction Factor
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Significant Subgraph Mining: Runtime
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Dependence between hypotheses

As patterns are often in sub-/superpattern-relationships, they do not constitute
independent hypotheses.

Informally: The underlying number of hypotheses may be much lower than the raw
count.

Westfall-Young-Permutation tests (Westfall and Young, 1993), in which the class labels
are repeatedly permuted to approximate the null distribution, are one strategy to take
this dependence into account.

Computational problem: How to efficiently perform these thousands of permutations?

There is one existing approach, FastWY (Terada et al., ICBB 2013), which suffers from
either memory or runtime problems.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

The Algorithm

1 Input: Transactions D, class labels y, target FWER α, number of permutations jp.

2 Perform jp permutations of the class label y and store each permutation as cj .

3 Initialize θ := 1 and δ∗ := ψ(θ) and p
(j)
min := 1.

4 Perform a depth first search on the patterns:

Compute the p-value of pattern S across all permutations, update p
(j)
min if necessary.

Update δ∗ by α-quantile of p
(j)
min, and increase θ accordingly.

Process all children of S with frequency ≥ ψ−1(δ∗).

5 Output: Corrected significance threshold δ∗.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Speed-up tricks of Westfall-Young light

Follows incremental search strategy rather than decremental search strategy of FastWY

Performs only one iteration of frequent pattern mining

Does not store the occurrence list of patterns

Does not compute the upper 1− α quantile of minimum p-values exactly.

Reduces the number of cell counts that have to be evaluated

Shares the computation of p-values across permutations
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Westfall-Young light

Runtime
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Westfall-Young light

Final frequency threshold (support)
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Westfall-Young light

Peak memory usage
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Westfall-Young light

Better control of the Family-wise error rate (Enzymes)
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