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Mapping Phenotypes to the Genome

ATGCATGCATGCATCACCATGCATGCTAGCTACG

ATGCAGGCATGCATCCCCATGCATGCTAGCGACG

ATGCATGCATGCATCACCATGCATGCTAGCGACG

ATGCAGGCATGCATCACCATGCATGCTAGCTACG

ATGCATGCATGCATCACCATGCATGCTAGCGACG

Sequence variationSignificant association between
phenotype and genotype?

Disease

0

0

0

1

1

Genotype
Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

A genome-wide association study (GWAS) examines whether variation in the genome (in
form of single nucleotide polymorphisms, SNPs) correlates with variation in the
phenotype.
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Missing Heritability

Since 2001: More than 2000 new disease loci due to GWAS

Problem: Phenotypic variance explained still disappointingly low

REVIEWS

Finding the missing heritability of complex
diseases
Teri A. Manolio1, Francis S. Collins2, Nancy J. Cox3, David B. Goldstein4, Lucia A. Hindorff5, David J. Hunter6,
Mark I. McCarthy7, Erin M. Ramos5, Lon R. Cardon8, Aravinda Chakravarti9, Judy H. Cho10, Alan E. Guttmacher1,
Augustine Kong11, Leonid Kruglyak12, Elaine Mardis13, Charles N. Rotimi14, Montgomery Slatkin15, David Valle9,
Alice S. Whittemore16, Michael Boehnke17, Andrew G. Clark18, Evan E. Eichler19, Greg Gibson20, Jonathan L. Haines21,
Trudy F. C. Mackay22, Steven A. McCarroll23 & Peter M. Visscher24

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and
traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the
remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose
research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics
of complex diseases and enhance its potential to enable effective disease prevention or treatment.

M
any common human diseases and traits are known to
cluster in families and are believed to be influenced by
several genetic and environmental factors, but until
recently the identification of genetic variants contributing

to these ‘complex diseases’ has been slow and arduous1. Genome-wide
association studies (GWAS), in which several hundred thousand to
more than a million single nucleotide polymorphisms (SNPs) are
assayed in thousands of individuals, represent a powerful new tool for
investigating the genetic architecture of complex diseases1,2. In the past
few years, these studies have identified hundreds of genetic variants
associated with such conditions and have provided valuable insights
into the complexities of their genetic architecture3,4.

The genome-wide association (GWA) method represents an
important advance compared to ‘candidate gene’ studies, in which
sample sizes are generally smaller and the variants assayed are limited
to a selected few, often on the basis of imperfect understanding of
biological pathways and often yielding associations that are difficult
to replicate5,6. GWAS are also an important step beyond family-based
linkage studies, in which inheritance patterns are related to several
hundreds to thousands of genomic markers. Despite many clear
successes in single-gene ‘Mendelian’ disorders7,8, the limited success
of linkage studies in complex diseases has been attributed to their low
power and resolution for variants of modest effect9–11.

The underlying rationale for GWAS is the ‘common disease,
common variant’ hypothesis, positing that common diseases are
attributable in part to allelic variants present in more than 1–5% of
the population12–14. They have been facilitated by the development of
commercial ‘SNP chips’ or arrays that capture most, although not all,
common variation in the genome. Although the allelic architecture of
some conditions, notably age-related macular degeneration, for the
most part reflects the contributions of several variants of large effect
(defined loosely here as those increasing disease risk by twofold or
more), most common variants individually or in combination confer
relatively small increments in risk (1.1–1.5-fold) and explain only a
small proportion of heritability—the portion of phenotypic variance
in a population attributable to additive genetic factors3. For example,
at least 40 loci have been associated with human height, a classic
complex trait with an estimated heritability of about 80%, yet they
explain only about 5% of phenotypic variance despite studies of tens
of thousands of people15. Although disease-associated variants occur
more frequently in protein-coding regions than expected from their
representation on genotyping arrays, in which over-representation of
common and functional variants may introduce analytical biases, the
vast majority (.80%) of associated variants fall outside coding
regions, emphasizing the importance of including both coding and
non-coding regions in the search for disease-associated variants3.
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Potential Reasons for Missing Heritability

Polygenic architectures

Most current analyses neglect additive or multiplicative effects between loci → need for
approaches for multi-locus mapping

Small effect sizes

Not detectable with small sample sizes

Phenotypic effect of other genetic, epigenetic or non-genetic factors

Genetic properties ignored so far, e.g. rare SNPs

Epigenetic modifications of the genome

Environmental effect on phenotype
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Addressing Potential Reasons for Missing Heritability

Machine Learning in Genetics

1 Multi-locus mapping:

Algorithms to discover disease-related systems of genetic loci

2 Increasing sample size:

Algorithms that support large-scale genotyping, association mapping and phenotyping

3 Deciding whether additional information is required:

Tests that quantify the impact of additional (epi)genetic factors
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Addressing Potential Reasons for Missing Heritability

Machine Learning in Genetics

1 Multi-locus mapping:

Efficient algorithms for discovering disease-related SNP pairs (KDD 2011, ISMB 2011)

Efficient algorithms for discovering disease-related SNP sets (ISMB 2013, ISMB 2015, KDD 2015)

2 Increasing sample size:

Large-scale genotyping in A. thaliana (Nature Genetics 2011, Cell 2016)

Large-scale association mapping with mixed models (Bioinformatics 2013)

Automated image phenotyping of guppy fish (Bioinformatics 2011)

In silico phenotyping of migraine patients (Bioinformatics 2015)

3 Deciding whether additional information is required:

Assessing the stability of methylation across generations of Arabidopsis lab strains (Nature 2011a,

PLoS Genetics 2015)

Assessing the functional impact of sequence variants (Human Mutation 2015)
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Multi-Locus Models: Discovering Trait-Related Interactions
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Problem statement

Find the pair of SNPs most correlated with a binary phenotype

argmax
i ,j

|r(xixj , y)|

xi and xj represent one SNP each and y is the phenotype; xi , xj , y are all n-dimensional
vectors, given n individuals.

There can be up to p = 107 SNPs, and order 1014 SNP pairs.

Existing approaches: Greedy selection, Branch-and-bound strategies or index structures
→ low recall or worst-case O(p2) time
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Multi-Locus Models: Discovering Trait-Related Interactions

Lightbulb algorithm (Paturi et al., COLT 1989)

Retrieves most correlated pair out of p binary vectors in O(p
1+

ln c1
ln c2 ) via iterative hashing

(c1 = highest, c2 = 2nd highest correlation)

Discrepancy 1: SNPs are non-binary in general

Discrepancy 2: Pearson’s correlation coefficient

Our solution (Achlioptas et al., KDD 2011)

Binarize our SNPs via locality sensitive hashing (Charikar, 2002).

Show that the Lightbulb algorithm on the binarized, transformed data computes the
solution to our maximum correlation problem on the unbinarized original data.

Empirical result: Approx. O(p1.5), speed-up of factor 1000 in practice
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Multi-Locus Models: Discovering Trait-Related Interactions
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Hapsample simulated dataset

Arabidopsis thaliana dataset
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Multi-Locus Models: Discovering Trait-Related Interactions

Alternative: Engineering approach

Use parallel computing power of Graphical Processing Units for interaction discovery
(Kam-Thong et al., ISMB 2011 & Human Heredity 2012)

Similar speed-up as the rLightbulb algorithm

Road ahead

We are part of the SNP x SNP interaction discovery projects of

The international lung disease genetics consortium COPDGene
The international headache genetics consortium IHGC (Clinical Migraine)
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Multi-Locus Models: Discovering Trait-Related Networks

Network information

What about models with more than 2 SNPs?

Additive models are hard to interpret, multiplicative models are hard to compute.

Can the growing knowledge about gene and protein networks be exploited to improve
multi-locus mapping?

Department Biosystems Karsten Borgwardt ECCB Workshop W7 September 3, 2016 10 / 34



Multi-Locus Models: Discovering Trait-Related Networks

Edges between SNPs near the same gene or SNPs in interacting genes
ci is the association score of SNP i , fi = 1 if SNP i is selected, fi = 0 if not.
Find a set of SNPs with maximum total score:

argmax
f ∈{0,1}p

c>f

such that
the selected SNPs form a connected subgraph and
f is sparse.

NP-complete problem: Maximum Weight Connected Subgraph Problem (Lee and Dooly,
1993)
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Multi-Locus Models: Discovering Trait-Related Networks
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Multi-Locus Models: Discovering Trait-Related Networks

Our formulation (Azencott et al., ISMB 2013)

Networks are incomplete → Connectedness needs not be strictly enforced, but merely

rewarded by a Graph Laplacian regularizer f >Lf =
∑
i∼j

(fi − fj)
2, where L = D −W .

The SNP subnetwork selection problem is then:

argmax
f ∈{0,1}p

c>f︸︷︷︸
association

− λ f >Lf︸ ︷︷ ︸
connectivity

− η ||f ||0︸ ︷︷ ︸
sparsity

This is a min-cut problem, for which efficient algorithms exist (we use Boykov and
Kolmogorov, IEEE TPAMI 2004).

Much faster and recovers four times more phenotype-related genes in A. thaliana than
network-constrained Lasso models
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Multi-Locus Models: Further Topics

Other important aspects

Including prior knowledge on relevance of SNPs (Limin Li et al., ISMB 2011)

Accounting for relatedness of individuals (Rakitsch et al., Bioinformatics 2013)

Predicting multiple correlated phenotypes jointly (Rakitsch et al., NIPS 2013)

Measuring statistical significance
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Multi-Locus Mapping: Statistical Significance

Multiple Hypothesis Testing Problem

What if we consider associations of groups of c SNPs with the phenotype?

This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k ∈ O(dc)).

If unaccounted for, α per cent of all SNP sets might be considered significantly
associated by random chance.

It is imperative to control the family-wise error rate!

If accounted for, e.g. by Bonferroni correction (
α

k
), we might lose all statistical power.

Long considered unsolvable dilemma in Data Mining

→ Starting Grant Significant Pattern Mining (2015-2020)
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Multi-Locus Mapping: Statistical Significance

Tarone’s trick

Tarone (1990) noted that when working with discrete test statistics, e.g. Fisher’s exact
test, there is a minimum p-value that a feature combination can achieve.

There are many untestable hypotheses whose minimum p-value is not smaller than
α

k
.

Only the remaining m(k) testable hypotheses can reach significance at all.

One can correct for m(k) instead of k . As often m(k) << k , this greatly improves
statistical power.

Grand data mining challenge: How to efficiently find m(k) without running through all
k ∈ O(dc) possible hypotheses?

We have developed frequent itemset mining algorithms for this task, which drastically
improve the statistical power (SDM 2015, KDD 2015, ISMB 2015a, NIPS 2016).

Department Biosystems Karsten Borgwardt ECCB Workshop W7 September 3, 2016 16 / 34



FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Genetic heterogeneity

Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.

The correlation between each individual gene or variant and the phenotype may be too
weak to be detected, but the group may have have a strong correlation.

The only current way to consider genetic heterogeneity is to consider fixed groups of
variants. Genome-wide scans cause tremendous computational and statistical problems.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

Our goal is to search for intervals that may exhibit genetic heterogeneity, while

allowing for arbitrary start and end points of the intervals,
properly correcting for the inherent multiple testing problem, and
retaining statistical power and computational efficiency.

We model the search as a pattern mining problem: Given an interval, an individual
contains a pattern, if it has at least one minor allele in this interval.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Finding trait-associated genome segments with at least one minor allele
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An interval is represented by its maximum value. The longer an interval, the more likely
it is that this maximum is 1.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Pruning criterion 1: If too many individuals have a particular pattern, the
corresponding interval is not testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Pruning criterion 2: If a pattern is too frequent to be testable, then none of the
superintervals of the corresponding interval is testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

70% (152)

18.9% (41)

6.9% (15)

4.2 % (9)

Novel Intervals

UFE ± 10kb \ LMM ± 10kb

LMM ± 10kb \ UFE ± 10kb 

LMM ± 10kb � UFE ± 10kb 

Most significant intervals would have been missed by univariate approaches (UFE and
LMM) on 21 binary phenotypes from Arabidopsis thaliana (Atwell et al., Nature 2010).
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FAIS: Conclusions and Outlook

Conclusions

We can search for intervals that may exhibit genetic heterogeneity

efficiently,
without pre-defining the boundaries of intervals,
while properly correcting for multiple testing.

Outlook: Genetic heterogeneity discovery

How to account for covariates like age and gender? → Solution for categorial covariates
(Papaxanthos et al., NIPS 2016)

How to extend our approach to non-binary encodings? → interpretation dependent

How to extend our approach to networks of SNPs or genes? → current work
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Three pointers
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easyGWAS

We have been developing easygwas.org, a Machine Learning platform for Geneticists
(490 users in May 2016):
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Machine Learning for Personalized Medicine Summer Schools

Marie Curie Initial Training Network

We need young experts at the Interface of Machine
Learning and data-driven Medicine.

Marie Curie Initial Training Network on Machine
Learning for Personalized Medicine (MLPM) (14
PhD positions, 12 labs, 8 countries, 3.75 million
EUR funding from 2013-2016)

Series of Summer Schools on Machine Learning for
Personalized Medicine

www.mlpm.eu
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Software

Epistasis, SCONES, Significant Pattern Mining and Graph Kernels

Epistasis: FAIS & FastCMH
www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html

www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/fastcmh.html

Network GWAS: SCONES
www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/scones.html

Significant Pattern Mining:
www.bsse.ethz.ch/mlcb/research/machine-learning/wylight.html

Graph Kernels: www.bsse.ethz.ch/mlcb/research/machine-learning/graph-kernels

http://www.bsse.ethz.ch/mlcb

Department Biosystems Karsten Borgwardt ECCB Workshop W7 September 3, 2016 30 / 34

www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html
www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/fastcmh.html
www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/scones.html
www.bsse.ethz.ch/mlcb/research/machine-learning/wylight.html 
www.bsse.ethz.ch/mlcb/research/machine-learning/graph-kernels
 http://www.bsse.ethz.ch/mlcb


Network Mining for Personalized Medicine

Summary

Network Mining, and more generally Multi-Locus Mapping, is a key technique to explore
the genetic basis of complex traits.

The high dimensionality of the problem leads to enormous computational and statistical
challenges.

Solving both problems at the same time is largely unachieved.

We have developed several Multi-Locus Mapping approaches that achieve both.
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