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Mapping Phenotypes to the Genome
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A genome-wide association study (GWAS) examines whether variation in the genome (in
form of single nucleotide polymorphisms, SNPs) correlates with variation in the

phenotype.
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Missing Heritability

m Since 2001; More than 2000 new disease loci due to GWAS

m Problem: Phenotypic variance explained still disappointingly low
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Finding the missing heritability of complex
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id iation studies have identified hundreds of genetic variants associated with complex human diseases and
traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
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Potential Reasons for Missing Heritability

Polygenic architectures

m Most current analyses neglect additive or multiplicative effects between loci — need for
approaches for multi-locus mapping

Small effect sizes

m Not detectable with small sample sizes

Phenotypic effect of other genetic, epigenetic or non-genetic factors

m Genetic properties ignored so far, e.g. rare SNPs
m Epigenetic modifications of the genome

m Environmental effect on phenotype
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Addressing Potential Reasons for Missing Heritability

Machine Learning in Genetics

Multi-locus mapping;:

m Algorithms to discover disease-related systems of genetic loci
Increasing sample size:

m Algorithms that support large-scale genotyping, association mapping and phenotyping
Deciding whether additional information is required:

m Tests that quantify the impact of additional (epi)genetic factors
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Addressing Potential Reasons for Missing Heritability

Machine Learning in Genetics

Multi-locus mapping:

m Efficient algorithms for discovering disease-related SNP pairs («pp 2011, IsME 2011)

m Efficient algorithms for discovering disease-related SNP sets (1smB 2013, 1SMB 2015, KDD 2015)
Increasing sample size:

m Large-scale genotyping in A. thaliana (Nature Genetics 2011, Cell 2016)

m Large-scale association mapping with mixed models (Bicinformatics 2013)

m Automated image phenotyping of guppy fish (Bisinformatics 2011)

m In silico phenotyping of migraine patients (Bioinformatics 2015)
Deciding whether additional information is required:

m Assessing the stability of methylation across generations of Arabidopsis lab strains (Nature 2011a,

PLoS Genetics 2015)
m Assessing the functional impact of sequence variants (Human Mutation 2015)
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Multi-Locus Models: Discovering Trait-Related Interactions

Problem statement

m Find the pair of SNPs most correlated with a binary phenotype
argmax |r(x;x;, y)|
ij
® x; and x; represent one SNP each and y is the phenotype; x;, x;,y are all n-dimensional
vectors, given n individuals.

m There can be up to p = 107 SNPs, and order 10** SNP pairs.

m Existing approaches: Greedy selection, Branch-and-bound strategies or index structures

— low recall or worst-case O(p?) time
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Multi-Locus Models: Discovering Trait-Related Interactions

Lightbulb algorithm (Paturi et al., COLT 1989)

Incp

1+'"Cz) via iterative hashing

m Retrieves most correlated pair out of p binary vectors in O(p
(c1 = highest, ¢ = 2nd highest correlation)

m Discrepancy 1: SNPs are non-binary in general

m Discrepancy 2: Pearson's correlation coefficient

Our solution (Achlioptas et al., KDD 2011)

m Binarize our SNPs via locality sensitive hashing (Charikar, 2002).

m Show that the Lightbulb algorithm on the binarized, transformed data computes the

solution to our maximum correlation problem on the unbinarized original data.

1.5)'

m Empirical result: Approx. O(p speed-up of factor 1000 in practice
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Multi-Locus Models: Discovering Trait-Related Interactions
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Multi-Locus Models: Discovering Trait-Related Interactions

Alternative: Engineering approach

m Use parallel computing power of Graphical Processing Units for interaction discovery
(Kam-Thong et al., ISMB 2011 & Human Heredity 2012)

m Similar speed-up as the rLightbulb algorithm

Road ahead

m We are part of the SNP x SNP interaction discovery projects of

m The international lung disease genetics consortium COPDGene
m The international headache genetics consortium IHGC (Clinical Migraine)
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Multi-Locus Models: Discovering Trait-Related Networks

s

Network information

m What about models with more than 2 SNPs?
m Additive models are hard to interpret, multiplicative models are hard to compute.

m Can the growing knowledge about gene and protein networks be exploited to improve
multi-locus mapping?
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Multi-Locus Models: Discovering Trait-Related Networks

2N
Ny

m Edges between SNPs near the same gene or SNPs in interacting genes
m ¢; is the association score of SNP /, f; = 1 if SNP i is selected, f; = 0 if not.
m Find a set of SNPs with maximum total score:
argmax c'f
fe{0,1}r
such that
m the selected SNPs form a connected subgraph and
m f is sparse.
m NP-complete problem: Maximum Weight Connected Subgraph Problem (Lee and Dooly,
1993)
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Multi-Locus Models: Discovering Trait-Related Networks
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Multi-Locus Models: Discovering Trait-Related Networks

Our formulation (Azencott et al., ISMB 2013)

Networks are incomplete — Connectedness needs not be strictly enforced, but merely
rewarded by a Graph Laplacian regularizer f' Lf = Z(f, — 6)2 where L=D — W.
inj

The SNP subnetwork selection problem is then:

T T
argmax ¢ £ — Af'Lf —n ||f],

P
fe{o.1} association  connectivity sparsity

This is a min-cut problem, for which efficient algorithms exist (we use Boykov and
Kolmogorov, IEEE TPAMI 2004).

Much faster and recovers four times more phenotype-related genes in A. thaliana than
network-constrained Lasso models
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Multi-Locus Models: Further Topics

Other important aspects

m Including prior knowledge on relevance of SNPs (Limin Li et al., 1sMB 2011)
m Accounting for relatedness of individuals (Rakitsch et al., Bioinformatics 2013)
m Predicting multiple correlated phenotypes jointly (rakitsch et al., NIPS 2013)

m Measuring statistical significance
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Multi-Locus Mapping: Statistical Significance

Multiple Hypothesis Testing Problem

m What if we consider associations of groups of ¢ SNPs with the phenotype?

m This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k € O(d")).

m If unaccounted for, a per cent of all SNP sets might be considered significantly
associated by random chance.

m It is imperative to control the family-wise error rate!

. . « . .
m If accounted for, e.g. by Bonferroni correction (F) we might lose all statistical power.
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Multi-Locus Mapping: Statistical Significance

Multiple Hypothesis Testing Problem

What if we consider associations of groups of ¢ SNPs with the phenotype?

m This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k € O(d")).

m If unaccounted for, a per cent of all SNP sets might be considered significantly
associated by random chance.

m It is imperative to control the family-wise error rate!
. . (0% . .
m If accounted for, e.g. by Bonferroni correction (E) we might lose all statistical power.

m Long considered unsolvable dilemma in Data Mining
— Starting Grant Significant Pattern Mining (2015-2020)
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Multi-Locus Mapping: Statistical Significance

Tarone's trick

m Tarone (1990) noted that when working with discrete test statistics, e.g. Fisher's exact
test, there is a minimum p-value that a feature combination can achieve.

- . o
m There are many untestable hypotheses whose minimum p-value is not smaller than X

Only the remaining m(k) testable hypotheses can reach significance at all.

One can correct for m(k) instead of k. As often m(k) << k, this greatly improves
statistical power.

m Grand data mining challenge: How to efficiently find m(k) without running through all
k € O(d®) possible hypotheses?

m We have developed frequent itemset mining algorithms for this task, which drastically
improve the statistical power (SDM 2015, KDD 2015, ISMB 2015a, NIPS 2016).
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Genetic heterogeneity

m Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.

m The correlation between each individual gene or variant and the phenotype may be too
weak to be detected, but the group may have have a strong correlation.

m The only current way to consider genetic heterogeneity is to consider fixed groups of
variants. Genome-wide scans cause tremendous computational and statistical problems.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

m Our goal is to search for intervals that may exhibit genetic heterogeneity, while
m allowing for arbitrary start and end points of the intervals,
m properly correcting for the inherent multiple testing problem, and
m retaining statistical power and computational efficiency.
m We model the search as a pattern mining problem: Given an interval, an individual
contains a pattern, if it has at least one minor allele in this interval.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Finding trait-associated genome segments with at least one minor allele
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m An interval is represented by its maximum value. The longer an interval, the more likely
it is that this maximum is 1.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Minimum attainable p-value of
.
o
.
.
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X
.

m Pruning criterion 1: If too many individuals have a particular pattern, the
corresponding interval is not testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

v
o
A

000

—

v
.
A

000

Cases

v
.
A

000

s
.
a

000

000

Controls
.
A

000

-t

001

001

001

001

001

001

1

01

01

01

01

01

01

SNPs

0
Meta-SNP

m Pruning criterion 2: If a pattern is too frequent to be testable, then none of the
superintervals of the corresponding interval is testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Power
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m Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

70% (152)
Novel Intervals

UFE £ 10kb \ LMM % 10kb
[ LMM £ 10kb \ UFE * 10kb
LMM £ 10kb ~ UFE * 10kb
18.9% (41)

6.9% (15)

m Most significant intervals would have been missed by univariate approaches (UFE and
LMM) on 21 binary phenotypes from Arabidopsis thaliana (Atwell et al., Nature 2010).
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FAIS: Conclusions and Outlook

Conclusions

m We can search for intervals that may exhibit genetic heterogeneity

m efficiently,
m without pre-defining the boundaries of intervals,
m while properly correcting for multiple testing.
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FAIS: Conclusions and Outlook

Conclusions

m We can search for intervals that may exhibit genetic heterogeneity

m efficiently,
m without pre-defining the boundaries of intervals,
m while properly correcting for multiple testing.

Outlook: Genetic heterogeneity discovery

m How to account for covariates like age and gender? — Solution for categorial covariates
(Papaxanthos et al., NIPS 2016)

m How to extend our approach to non-binary encodings? — interpretation dependent

m How to extend our approach to networks of SNPs or genes? — current work
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Three pointers
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easyGWAS

m We have been developing easygwas.org, a Machine Learning platform for Geneticists

(490 users in May 2016):
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easygwas.org

Machine Learning for Personalized Medicine Summer Schools

Marie Curie Initial Training Network

m We need young experts at the Interface of Machine
Learning and data-driven Medicine.

m Marie Curie Initial Training Network on Machine
Learning for Personalized Medicine (MLPM) (14
PhD positions, 12 labs, 8 countries, 3.75 million
EUR funding from 2013-2016)

m Series of Summer Schools on Machine Learning for
Personalized Medicine
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www.mlpm.eu

Software

Epistasis, SCONES, Significant Pattern Mining and Graph Kernels

m Epistasis: FAIS & FastCMH
www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html

www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/fastcmh.html

m Network GWAS: SCONES

www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/scones.html

m Significant Pattern Mining:
www.bsse.ethz.ch/mlcb/research/machine-learning/wylight.html

m Graph Kernels: www.bsse.ethz.ch/mlcb/research/machine-learning/graph-kernels

http://www.bsse.ethz.ch/mlcb
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Network Mining for Personalized Medicine

Summary

m Network Mining, and more generally Multi-Locus Mapping, is a key technique to explore
the genetic basis of complex traits.

m The high dimensionality of the problem leads to enormous computational and statistical
challenges.

m Solving both problems at the same time is largely unachieved.

m We have developed several Multi-Locus Mapping approaches that achieve both.
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Thank you

Alfried-Krupp-Award for Young Professors
Marie-Curie-Programme (Initial Training Network)
Starting Grant (ERC-Backup Scheme of the SNSF)
Horizon2020 Research and Innovation Action
International Genetics Consortia: IHGC and COPDGene

http://www.bsse.ethz.ch/mlcb
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