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The Need for Machine Learning in Computational Biology

High-throughput technologies:
m Genome and RNA sequencing
m Compound screening
m Genotyping chips

m Bioimaging

BGI Hong Kong, Tai Po Industrial Estate, Hong Kong

Molecular databases are growing much faster than our knowledge of biological processes.
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The Evolution of Bioinformatics

m Classic Bioinformatics: Focus on Molecules
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Classic Bioinformatics: Focus on Molecules

m Large collections of molecular data
m Gene and protein sequences

m Genome sequence
m Protein structures
m Chemical compounds

m Focus: Inferring properties of molecules
m Predict the function of a gene given its sequence
m Predict the structure of a protein given its sequence
m Predict the boundaries of a gene given a genome segment
|

Predict the function of a chemical compound given its molecular structure
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Example: Predicting Function from Structure

m Structure-Activity Relationship

25 26 27

Source: Joska T M, and Anderson A C Antimicrob. Agents Chemother. 2006;50:3435-3443

m Fundamental idea: Similarity in structure implies similarity in function
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Measuring the Similarity of Graphs

m How similar are two graphs?

m How similar is their structure?
m How similar are their node labels and edge labels?
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Graph Comparison

Graph isomorphism and subgraph isomorphism checking
m Exact match
m Exponential runtime
Graph edit distances
m Involves definition of a cost function
m Typically subgraph isomorphism as intermediate step
Topological descriptors
m Lose some of the structural information represented by the graph or
m Exponential runtime effort
Graph kernels (Gartner et al, 2003; Kashima et al. 2003)
m Goal 1: Polynomial runtime in the number of nodes
m Goal 2: Applicable to large graphs
m Goal 3: Applicable to graphs with attributes
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Graph Kernels |

m Kernels

m Key concept: Move problem to feature space H.
m Naive explicit approach:

m Map objects x and x’ via mapping ¢ to H.
m Measure their similarity in H as {(¢(x), ¢(x')).

m Kernel Trick: Compute inner product in H as kernel in input space k(x,x’) = (¢(x), p(x')).

R2
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Graph Kernels ||

m Graph kernels

m Kernels on pairs of graphs
(not pairs of nodes)
m Instance of R-Convolution kernels (Haussler, 1999):
m Decompose objects x and x” into substructures.
m Pairwise comparison of substructures via kernels to compare x and x’.

m A graph kernel makes the whole family of kernel methods applicable to graphs.
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Weisfeiler-Lehman Kernel (Shervashidze and Borgwardt, NIPS 2009)

Ist iteration
Result of steps 1 and 2: multiset-label determination and sorting

Given labeled graphs G and G’
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Weisfeiler-Lehman Kernel (Shervashidze and Borgwardt, NIPS 2009)

End of the 1st iteration
Feature vector representations of G and G’

(G)=(2,1,1,1,1,2,0,1,0,1,1,0,1)
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Subtree-like Patterns
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Weisfeiler-Lehman Kernel: Theoretical Runtime Properties

m Fast Weisfeiler-Lehman kernel (NIPS 2009 and JMLR 2011)
m Algorithm: Repeat the following steps h times

Sort: Represent each node v as sorted list L, of its neighbors (O(m))
Compress: Compress this list into a hash value h(L,) (O(m))
Relabel: Relabel v by the hash value h(L,) (O(n))

m Runtime analysis
m per graph pair: Runtime O(m h)
m for N graphs: Runtime O(N m h+ N? n h) (naively O(N? m h))
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Weisfeiler-Lehman Kernel: Empirical Runtime Properties
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Weisfeiler-Lehman Kernel: Runtime and Accuracy
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The Evolution of Bioinformatics

s Modern Bioinformatics: Focus on Individuals
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Modern Bioinformatics: Focus on Individuals

m High-throughput technologies now enable the collection of molecular information on
individuals

m Microarrays to measure gene expression levels
m Chips to determine the genotype of an individual
m Sequencing to determine the genome sequence of an individual
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Genetics: Association Studies

m Genome-Wide Association Studies (GWAS)
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m One considers genome positions that differ between individuals, that is Single Nucleotide
Polymorphisms (SNPs) (more general: genetic locus or genomic variant).

m Problem size: 10°-10” SNPs per genome, 102 to 10° individuals
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Genetics: Manhattan Plots

m The standard statistical analysis in Genetics: Generating a Manhattan plot of
association signals
Manhattan-plot for chromosome Chr2
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Phenotype: Flower color-related trait of Arabidopsis thaliana

m A plot of genome positions versus p-values of association/correlation.
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Genetics: Missing Heritability

m More than 1200 new disease loci were detected over the last decade.
m The phenotypic variance explained by these loci is disappointingly low:

Vol 461/8 October 2009|doi:10.1038/nature08494 nature

REVIEWS

Finding the missing heritability of complex
diseases

Teri A. Manolio’, Francis S. Collins?, Nancy J. Cox®, David B. Goldstein*, Lucia A. Hindorff*, David J. Hunter®,
Mark I. McCarthy’, Erin M. Ramos®, Lon R. Cardon®, Aravinda Chakravarti’, Judy H. Cho'’, Alan E. Guttmacher',
Augustine Kong'', Leonid Kruglyak'?, Elaine Mardis'?, Charles N. Rotimi'*, Montgomery Slatkin'®, David Valle’,
Alice S. Whittemore'®, Michael Boehnke'”, Andrew G. Clark'®, Evan E. Eichler'’, Greg Gibson®’, Jonathan L. Haines?!,
Trudy F. C. Mackay??, Steven A. McCarroll** & Peter M. Visscher®*

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and
traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively

Manolio et al;, Nature 2009
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Genetics: Potential Reasons for Missing Heritability

Polygenic architectures

m Most current analyses neglect additive or multiplicative effects between loci — need for
systems biology perspective

Small effect sizes

m Not detectable with small sample sizes

Phenotypic effect of other genetic, epigenetic or non-genetic factors

m Genetic properties ignored so far, e.g. rare SNPs
m Chemical modifications of the genome

m Environmental effect on phenotype
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Machine Learning in Genetics |

Moving to a Systems Biology Perspective

m Multi-locus models:

m Algorithms to discover trait-related systems of genetic loci
m Increasing sample size:

m Algorithms that support large-scale genotyping and phenotyping
m Deciding whether additional information is required:

m Tests that quantify the impact of additional (epi)genetic factors
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Machine Learning in Genetics Il

Moving to a Systems Biology Perspective

m Multi-locus models:

m Efficient algorithms for discovering trait-related SNP pairs: Epistasis discovery (kpp 2011, Human
Heredity 2012)

® Increasing sample size:

m Large-scale genotyping in A. thaliana (Nature Genetics 2011)
m Automated image phenotyping of guppy fish (Bisinformatics 2012)
m Automated image phenotyping of human lungs (pmi 2013)

m Deciding whether additional information is required:

m Assessing the stability of methylation across generations of Arabidopsis lab strains (Nature 2011)
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Epistasis: Computational Bottlenecks

Scale of the problem

Typical datasets include order 10° — 107 SNPs.
Hence we have to consider order 10*° — 10'* SNP pairs.

Enormous multiple hypothesis testing problem.

Enormous computational runtime problem.

Department Biosystems Karsten Borgwardt ITWM Kaiserslautern | September 30, 2016 | 24 / 76



Epistasis: Common approaches in the literature
Exhaustive enumeration

m Only with special hardware such as Cloud Computing or GPU implementations (cs.

Kam-Thong et al., EJHG 2010, ISMB 2011, Hum Her 2012)

Filtering approaches

m Statistical criterion, e.g. SNPs with large main effect (znang et a1, 2007)

m Biological criterion, e.g. underlying PPl (emiy et a1, 2000)

Index structure approaches

m fastANOVA, branch-and-bound on SNPSs (zhang et al., 2008)

m TEAM, efficient updates of contingency tables (zhang et al, 2010)
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Multi-Locus Models: Discovering Trait-Related Interactions

Problem statement

m Find the pair of SNPs most correlated with a binary phenotype
argmax |r(x; © x;,y)|
(i)
m x; and x; represent one SNP each and y is the phenotype; x;,x;,y are all m-dimensional
vectors, given m individuals.
m There can be up to n = 10" SNPs, and order 10** SNP pairs.

m Existing approaches: low recall or worst-case O(n ) time
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Difference in Correlation for Epistasis Detection

m We phrase epistasis detection as a difference in correlation problem:
argmax |pcases(xi7 xj) - Pcontrols(xiv xj)|- (1)
ij

m Different degree of linkage disequilibrium of two loci in cases and controls
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The Lightbulb Algorithm (Paturi et al., COLT 1989)

Maximum correlation

m The lightbulb algorithm tackles the maximum correlation problem on an m x n matrix A
with binary entries:

argmax |pa(x;, x;)|- (2)
ij

Quadratic runtime algorithm

m As in epistasis detection, the problem can be solved by naive enumeration of all n?
possible solutions.

Department Biosystems Karsten Borgwardt ITWM Kaiserslautern | September 30, 2016 | 28 / 76



The Lightbulb Approach

Lightbulb algorithm

Given a binary matrix A with m rows and n columns.
Repeat / times:
m Sample k rows
m Increase a counter for all pairs of columns that match on these k rows.

The counters divided by / give an estimate of the correlation P(x; = x;).

Subquadratic runtime

m With probability near 1, the lightbulb algorithm retrieves the most correlated pair in

Inc

14+ , . .
O(n e In? n), where ¢; and ¢ are the highest and second highest correlation score.
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Difference Between the Epistasis and Lightbulb Problem Setting

Discrepancies

m Difference in correlation
m SNPs are non-binary in general

m Pearson’s correlation coefficient
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Step 1: Difference in Correlation
Theorem

Given a matrix of cases A and a matrix of controls B of identical size.

Finding the maximally correlated pair on

(g 1 fB) (3)

(& 's%) (4)

m and on

m is identical to

argmax |pa(x;, X;) — pB(xi, %;)|- (5)
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Step 2: Locality Sensitive Hashing (Charikar, 2002)

Given a collection of vectors in R™ we choose a random vector r from the m-dimensional
Gaussian distribution. Corresponding to this vector r, we define a hash function h, as
follows:

1 ifr'x;>0
he(x;) = - 6
r(xi) {o ifrix; <0 ©)

Theorem
9(X,‘, xj)
v

For vectors xj,x;, Pr[he(x;) = he(x;)] =1 — , where 0(x;,x;) is the angle

between the two vectors x; and x;.
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Step 3: Pearson’s Correlation Coefficient

Link between correlation and cosine

Karl Pearson defined the correlation of 2 vectors x;,x; in R™ as

p = Covlxi %) (7)

JX;UXj

that is the covariance of the two vectors divided by their standard deviations. An
equivalent geometric way to define it is:

p = cos(B(x; — X;, xj — X)), (8)

where X; and X; are the mean value of x; and x;, respectively.
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The Lightbulb Epistasis Algorithm (Achlioptas et al., KDD 2011)

Algorithm
Binarize original matrices Ap and By into A and B by locality sensitive hashing.
Compute maximally correlated pair p1 on < g 'IA_ B > via lightbulb.
Compute maximally correlated pair p2 on ( g IB_ A ) via lightbulb.

Report the maximum of p; and p».
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Experiments: Arabidopsis SNP dataset

Results on Arabidopsis SNP dataset

# SNPs | Measurements Pairs Exponent | Speedup | Top 10 | Top 100 | Top 500 | Top 1K

100,000 8,255,645 8,186,657 1.38 611 1.00 0.86 0.82 0.80

100,000 52,762,001 51,732,700 1.54 97 1.00 1.00 0.99 0.98
Runtime

= Runtime is empirically O(n"®).
m Epistasis detection on the human genome would require 1 day of computation on a
typical desktop PC.
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Experiments: Runtime versus Recall
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Multi-Locus Models: Current Work

Other important aspects

m Including prior knowledge on relevance of SNPS (Limin Liet al., 1sMB 2011)
m Accounting for relatedness of individuals (Rakitsch et al., Bicinformatics 2012)
m Measuring statistical significance (sugiyama et al., andiv 2014)

m Modelling correlations between multiple phenotypes (Rakitsch et al., NIPS 2013)
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Increasing Sample Size: Genotyping (Cao et al., Nat. Gen. 2011)
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Setup

m 80 fully sequences genomes from
A. thaliana (3 million SNPs)

m 4 strains with 250.000 SNPs

m Can we predict the remaining
SNPs?

Result
m Employed BEAGLE to predict
missing SNPs in 4 strains

m Missing sites can be accurately
predicted (>96% accuracy)
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Increasing Sample Size: Phenotyping (Karaletsos et al., Bioinf. 2012)
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Setup

m Guppy image collections

m Re-occurring color patterns are
phenotypes

m How to phenotype the guppies
automatically?

Result

m Proposed Markov Random Field
for pattern discovery

m Recovers color patterns found by
manual annotation
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Increasing Sample Size: Phenotyping (Feragen et al., NIPS 2013c)
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Setup

m Collections of CT-scans of human
lungs

m Structural differences may be
linked to disease (COPD)

m How to measure differences in
lung structure?

Result

m Proposed novel, efficient similarity
measure on geometric trees (tree

kernel)
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Additional Factors: Epigenetic Influences (Becker et al., Nature 2011, Hagmann et al.,

PLoS Genetics, 2015)

./,/: \\\

ﬂt'%ﬁﬁﬁﬁﬁﬂﬂ%

20 39 49 s 6 79 89 09 109 119

Department Biosystems Karsten Borgwardt

Setup

m 33 generations of lab strains of A.
thaliana

m How stable is the methylation
state of genome positions across
generations?

Result

m Position-specific methylation
varies greatly

m Region-wide methylation is more
stable
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An Online Resource for Machine Learning on Complex Traits

m We published easyGWAS (https://easygwas.org/), a machine learning platform for
analysing complex traits (Grimm et al., arXiv 2012):

easyGWA - View results
o canyoma - view resuts =

<) @ hups fessya 5518443104196 @] (38~ Google Q) (&) ([@-

U 4

An integrated platform for pe g and comparing d studies

Manhattan Plots  QQ-Plots  Phonotype Explorer  SNP Annotations  Detaled experiment summary

QWA P ia: Download Summry Statistics

Brief summary

mmn«a

chromosomal positon [op]

Arabidopsis thalana

o= ¥ zotero

Department Biosystems Karsten Borgwardt ITWM Kaiserslautern | September 30, 2016 | 42 / 76


https://easygwas.tuebingen.mpg.de/

The Evolution of Bioinformatics

s Future of Bioinformatics: Personalized Medicine
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Personalized Medicine: Biomarker Discovery

m Personalized Medicine
m Tailoring medical treatment to the molecular properties of a patient
m Biomarker Discovery

m Detecting molecular components that are indicative of disease outbreak, progression or
therapy outcome

m Biomarker

m The term ‘biomarker’, short for ‘biological marker’, refers to a broad subcategory of medical
signs — that is, objective indications of medical state observed from outside the patient —
which can be measured accurately and reproducibly (Strimbu and Tavel, 2010).
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Personalized Medicine: Where We Stand

m Producing molecular data: Sequencing costs

m USD 300,000,000 cost of sequencing a human genome in 2001
m USD 1,000 cost of sequencing a human genome in 2014

m Storing molecular data: Electronic health records

m 29% of U.S. physicians used an electronic health system in 2006
m 93% reported actively using medical records in 2013

m Using molecular data: Products

m 13 prominent examples of personalized medicine drugs, treatments and diagnostics products
available in 2006

m 113 prominent examples of personalized medicine drugs, treatments and diagnostics products
available in 2014

Source: http://www.ageofpersonalizedmedicine.org/
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Significant Pattern Mining
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Biomarker Discovery

Class 1 Class 2
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Biomarker Discovery as a Pattern Mining Problem

Finding groups of disease-related molecular factors

m Single genetic variants, gene expression levels, protein abundancies are often not
sufficiently indicative of disease outbreak, progression or therapy outcome.

m Searching for combinations of these molecular factors creates an enormous search space,
and two inherent problems:

Computational level: How to efficiently search this large space?
Statistical level: How to properly account for testing an enormous number of hypotheses?

m The vast majority of current work in this direction (e.g. Achlioptas et al., KDD 2011)
focuses on Problem 1, the computational efficiency.

m But Problem 2, multiple testing, is also of fundamental importance!
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Biomarker Discovery as a Pattern Mining Problem

Class 1 Class 2

DD QLOOOEC
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m Feature Selection: Find features that distinguish classes of objects

m Pattern Mining: Find higher-order combinations of binary features, so-called patterns,

to distinguish one class from another
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Pattern Mining

Definition of a pattern

m A pattern is a set of dimensions S.

m A binary vector x contains a pattern S if Hx,- =1, where x; is dimension J of x.
ieS
Definition of a frequent pattern

m Assume we are given n vectors {x;}i_;.
m If at least 6 vectors contain pattern S, then S is a frequent pattern.

m 0 is a pre-defined frequency threshold.
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Pattern Mining

Frequent pattern mining

m Analogous definitions for frequent subgraph mining and frequent substring mining.

m Numerous branch-and-bound algorithms have been proposed for finding frequent
patterns (Aggarwal and Han, 2014).

Problem statement: Significant Pattern Mining

m Assume we are given n vectors {x;}/_;, each of which has a binary class label y; € 0, 1.

m Our goal is to find all patterns S that are statistically significant enriched in one of
the two classes y =0 or y = 1.
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Statistical Significance and Testability

Fisher's exact test

m Contingency Table

|S € x| |S ¢ x|
y=0 a ng—a ng
y=1| x—a |n—n—x+a|n—ng
X n—x n

m A popular choice is Fisher’s exact test to test whether S is overrepresented in one of the
two classes.

m The common way to compute p-values for Fisher's exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x, ng, n).
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Statistical Significance and Testability

Multiple testing correction in pattern mining

m The number of candidate patterns grows exponentially with the cardinality of the
pattern.
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Statistical Significance and Testability

Multiple testing correction in pattern mining
m The number of candidate patterns grows exponentially with the cardinality of the
pattern.

m If we do not correct for multiple testing, o per cent of all candidate patterns will be false
positives.
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Statistical Significance and Testability

Multiple testing correction in pattern mining
m The number of candidate patterns grows exponentially with the cardinality of the
pattern.

m If we do not correct for multiple testing, o per cent of all candidate patterns will be false
positives.

m If we do correct for multiple testing, e.g. via Bonferroni correction ( ), then we

tests
lose any statistical power.
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Statistical Significance and Testability

Tarone's trick

m Tarone's insight: When working with discrete test statistics (e.g. Fisher's exact test),
there is a minimum p-value that a given pattern can obtain, based on its total frequency.
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Statistical Significance and Testability

Tarone's trick

m Tarone's insight: When working with discrete test statistics (e.g. Fisher's exact test),
there is a minimum p-value that a given pattern can obtain, based on its total frequency.

m Tarone's trick (1990): Ignore those patterns in multiple testing correction, for which the
minimum p-value is larger than the Bonferroni-corrected significance threshold.
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Statistical Significance and Testability

Tarone's trick

m Tarone's insight: When working with discrete test statistics (e.g. Fisher's exact test),
there is a minimum p-value that a given pattern can obtain, based on its total frequency.

m Tarone's trick (1990): Ignore those patterns in multiple testing correction, for which the
minimum p-value is larger than the Bonferroni-corrected significance threshold.

m If the p-values are conditioned on the total marginals (e.g. in Fisher's exact test),
Tarone's trick does not increase the Family Wise Error rate.
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Mining Significant Patterns

Tarone's approach (1990)

m For a discrete test statistics T(S) for a pattern S, such as in Fisher's exact test, there is
a minimum obtainable p-value, pmin(S).

m For some S, pmin(S) > 2 Tarone refers to them as untestable hypotheses U.
m

= Tarone’s strategy: Ignore untestable hypotheses I/ when counting the number of tests
m for Bonferroni correction.
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Tarone's approach (1990)
m For a discrete test statistics T(S) for a pattern S, such as in Fisher's exact test, there is
a minimum obtainable p-value, pmin(S).

m For some S, pmin(S) > 2 Tarone refers to them as untestable hypotheses U.
m

m Tarone’s strategy: Ignore untestable hypotheses I/ when counting the number of tests
m for Bonferroni correction.

If the p-values of the test are conditioned on the total marginals (as in Fisher's exact
test), this does not affect the Family-Wise Error Rate.
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Mining Significant Patterns

Tarone's approach (1990)
m For a discrete test statistics T(S) for a pattern S, such as in Fisher's exact test, there is
a minimum obtainable p-value, pmin(S).

m For some S, pmin(S) > 2 Tarone refers to them as untestable hypotheses U.
m

m Tarone’s strategy: Ignore untestable hypotheses I/ when counting the number of tests
m for Bonferroni correction.

If the p-values of the test are conditioned on the total marginals (as in Fisher's exact
test), this does not affect the Family-Wise Error Rate.

Difficulty: There is an interdependence between m and /.
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Mining Significant Patterns

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at significance level %.
m Then the optimization problem is

min k

s. t. k> m(k)
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Mining Significant Patterns

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at significance level %.

procedure TARONE

k=1

while k < m(k) do
k=k+1:

return k
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Mining Significant Patterns

Terada's link to frequent itemset mining (Terada et al., PNAS 2013)

m For 0 < x < ny, the minimum p-value ppin(S) decreases monotonically with x.
m One can use frequent itemset mining to find all S that are testable at level «, with
frequency 1~ (v).
m They propose to use a decremental search strategy:
procedure TERADA’S DECREMENTAL SEARCH (LAMP)

k :="very large";
while k > m(k) do
k=k-1;

m(k) := frequent itemset mining(D,Q,[}_l(%));

return k +1
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Mining Significant Patterns
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Example: PTC dataset (Helma et al., 2001)
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Significant Subgraph Mining (sugyiama et al., SDM 2015)

Class 1
®—® @©—®
(a] @I ®
(8)
(a]
RO
Significant Subgraph Mining

m Each object is a graph.
m A pattern is a subgraph in these graphs.

Class 2
.—I OXO=0)
(a]
© oro

OO,
(€]
&

m Typical application in Drug Development: Find subgraphs that discriminate between

molecules with and without drug effect.

m Counting all tests (= all patterns) requires exponential runtime in the number of nodes.

Department Biosystems Karsten Borgwardt

ITWM Kaiserslautern | September 30, 2016 | 60 / 76



Significant Subgraph Mining (sugyiama et al., SDM 2015)

Incremental search with early stopping

u procedure INCREMENTAL SEARCH WITH EARLY STOPPING

f:=0
repeat
0:=60+1; FSy :=
repeat
find next frequent subgraph at frequency 6
FSp == FSp +1
until (no more frequent subgraph found) or (FSy > ﬁ)
until FSy < w(a)

return (0)

n 0 is the maximum correction factor, such that subgraphs with frequency 6 can be significant at level ¥(0).
Department Biosystems Karsten Borgwardt ITWM Kaiserslautern | September 30, 2016 | 61 / 76



Significant Subgraph Mining on PTC Dataset
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Significant Subgraph Mining: Correction Factor

Department Biosystems
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Significant Subgraph Mining: Runtime
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Dependence between hypotheses

m As patterns are often in sub-/superpattern-relationships, they do not constitute
independent hypotheses.

m Informally: The underlying number of hypotheses may be much lower than the raw
count.

m Westfall-Young-Permutation tests (Westfall and Young, 1993), in which the class labels
are repeatedly permuted to approximate the null distribution, are one strategy to take
this dependence into account.

m Computational problem: How to efficiently perform these thousands of permutations?

m There is one existing approach, FastWY (Terada et al., ICBB 2013), which suffers from
either memory or runtime problems.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

The Algorithm

Input: Transactions D, class labels y, target FWER «a, number of permutations jp.

Perform j, permutations of the class label y and store each permutation as c;.
O — * . _ U ._
Initialize § :== 1 and 0™ := () and p,; = 1.
@A Perform a depth first search on the patterns:
m Compute the p-value of pattern S across all permutations, update p,(ﬂn if necessary.

m Update §* by a-quantile of pggn, and increase 6 accordingly.
m Process all children of S with frequency > 1~ *(5*).

Output: Corrected significance threshold 6.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Speed-up tricks of Westfall-Young light

Follows incremental search strategy rather than decremental search strategy of FastWY
Performs only one iteration of frequent pattern mining

Does not store the occurrence list of patterns

Does not compute the upper 1 — o quantile of minimum p-values exactly.

Reduces the number of cell counts that have to be evaluated

Shares the computation of p-values across permutations
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Westfall-Young light

m Runtime
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Westfall-Young light

m Final frequency threshold (support)
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Westfall-Young light

m Peak memory usage

Department Biosystems
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Westfall-Young light

m Better control of the Family-wise error rate (Enzymes)
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Detecting “Genetic Heterogeneity” (Llinares et al., ISMB 2015b)

____________________________________ A?ﬁ&?\f‘;’fd Random variable

i ooo1o1oo110001'6_1_66‘10001o1o Cgsil13,4) =1

%_ * 0001010011000%0010%0001010 3g(sz[13,4])=1

§ ‘ ‘t 0001010011000%100130001010 ﬁg(S3[13,4])=1
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%’ % * 0001010011000%0000%0001010 %g(55[13,4])=0

© LO :f 00010100110003\0000‘30001010 %g(56[13,4])=0

L = Number of SNPs

Detecting intervals significantly associated with phenotypic variation

m Find subsequences which tend to contain at least one minor allele in one of the two
phenotypic groups
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Education: Our Marie Curie Initial Training Network

m Goal: Enable medical treatment tailored to patients’ molecular properties

m Plan: Build a research community at the interface of Machine Learning and data-driven
Medicine

m First step: Marie Curie Initial Training Network (ITN)

Topic: Machine Learning for Personalized Medicine (MLPM)

Duration: 4 years, 2013-2016

13 early-stage researchers + 1 postdoc in 12 labs at 10 nodes in 6 countries
3.75 million EUR funding for PhD students and training events

Research programmes:

m Biomarker Discovery

m Data Integration

m Causal Mechanisms of Disease

m Gene-Environment Interactions

m Follow us on mlpm.eu
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Summary

Machine Learning in Bioinformatics

m Classic Bioinformatics

m Comparing graphs in Chemoinformatics
m Current Bioinformatics

m High-dimensional feature selection in Statistical Genetics
m Future Bioinformatics

m Significant pattern mining for biomarker discovery in Personalized Medicine
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Thank You

Postdocs and PhD students:

Dean Bodenham

Lukas Folkman
Udo Gieraths

Thomas Gumbsch

Xiao He

Felipe Llinares Lopez

Laetitia Papaxanthos

Damian Roqueiro

n
n
m
m
m Anja Gumpinger
n
n
n
n
n

Caroline Weis
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MLCB ..

Sponsors:

m Krupp-Stiftung

m Marie-Curie-FP 7

m Starting Grant (SNSF's ERC backup
scheme)
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Thank You

"\
bsse.ethz.ch/mlcb

Department Biosystems Karsten Borgwardt ITWM Kaiserslautern | September 30, 2016 | 76 / 76



Machine Learning for Personalized Medicine
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