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The Need for Machine Learning in Computational Biology

BGI Hong Kong, Tai Po Industrial Estate, Hong Kong

High-throughput technologies:

Genome and RNA sequencing

Compound screening

Genotyping chips

Bioimaging

Molecular databases are growing much faster than our knowledge of biological processes.
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The Evolution of Bioinformatics

Classic Bioinformatics: Focus on Molecules
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Classic Bioinformatics: Focus on Molecules

Large collections of molecular data

Gene and protein sequences
Genome sequence
Protein structures
Chemical compounds

Focus: Inferring properties of molecules

Predict the function of a gene given its sequence
Predict the structure of a protein given its sequence
Predict the boundaries of a gene given a genome segment
Predict the function of a chemical compound given its molecular structure
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Example: Predicting Function from Structure

Structure-Activity Relationship

Source: Joska T M , and Anderson A C Antimicrob. Agents Chemother. 2006;50:3435-3443

Fundamental idea: Similarity in structure implies similarity in function
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Measuring the Similarity of Graphs

How similar are two graphs?

How similar is their structure?
How similar are their node labels and edge labels?
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Graph Comparison

1 Graph isomorphism and subgraph isomorphism checking

Exact match
Exponential runtime

2 Graph edit distances

Involves definition of a cost function
Typically subgraph isomorphism as intermediate step

3 Topological descriptors

Lose some of the structural information represented by the graph or
Exponential runtime effort

4 Graph kernels (Gärtner et al, 2003; Kashima et al. 2003)

Goal 1: Polynomial runtime in the number of nodes
Goal 2: Applicable to large graphs
Goal 3: Applicable to graphs with attributes
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Graph Kernels I

Kernels
Key concept: Move problem to feature space H.
Naive explicit approach:

Map objects x and x′ via mapping φ to H.
Measure their similarity in H as 〈φ(x), φ(x′)〉.

Kernel Trick: Compute inner product in H as kernel in input space k(x, x′) = 〈φ(x), φ(x′)〉.

R2 ⇒ H
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Graph Kernels II

Graph kernels

Kernels on pairs of graphs
(not pairs of nodes)
Instance of R-Convolution kernels (Haussler, 1999):

Decompose objects x and x′ into substructures.
Pairwise comparison of substructures via kernels to compare x and x′.

A graph kernel makes the whole family of kernel methods applicable to graphs.

G G’
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Weisfeiler-Lehman Kernel (Shervashidze and Borgwardt, NIPS 2009)
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Weisfeiler-Lehman Kernel (Shervashidze and Borgwardt, NIPS 2009)
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Subtree-like Patterns
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Weisfeiler-Lehman Kernel: Theoretical Runtime Properties

Fast Weisfeiler-Lehman kernel (NIPS 2009 and JMLR 2011)
Algorithm: Repeat the following steps h times

1 Sort: Represent each node v as sorted list Lv of its neighbors (O(m))
2 Compress: Compress this list into a hash value h(Lv ) (O(m))
3 Relabel: Relabel v by the hash value h(Lv ) (O(n))

Runtime analysis

per graph pair: Runtime O(m h)
for N graphs: Runtime O(N m h + N2 n h) (naively O(N2 m h))
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Weisfeiler-Lehman Kernel: Empirical Runtime Properties
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Weisfeiler-Lehman Kernel: Runtime and Accuracy
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The Evolution of Bioinformatics

Modern Bioinformatics: Focus on Individuals
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Modern Bioinformatics: Focus on Individuals

High-throughput technologies now enable the collection of molecular information on
individuals

Microarrays to measure gene expression levels
Chips to determine the genotype of an individual
Sequencing to determine the genome sequence of an individual
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Genetics: Association Studies

Genome-Wide Association Studies (GWAS)

bco D. Weigel

One considers genome positions that differ between individuals, that is Single Nucleotide
Polymorphisms (SNPs) (more general: genetic locus or genomic variant).

Problem size: 105-107 SNPs per genome, 102 to 105 individuals
Department Biosystems Karsten Borgwardt ITWM Kaiserslautern September 30, 2016 18 / 76



Genetics: Manhattan Plots

The standard statistical analysis in Genetics: Generating a Manhattan plot of
association signals
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Genetics: Missing Heritability

More than 1200 new disease loci were detected over the last decade.
The phenotypic variance explained by these loci is disappointingly low:

REVIEWS

Finding the missing heritability of complex
diseases
Teri A. Manolio1, Francis S. Collins2, Nancy J. Cox3, David B. Goldstein4, Lucia A. Hindorff5, David J. Hunter6,
Mark I. McCarthy7, Erin M. Ramos5, Lon R. Cardon8, Aravinda Chakravarti9, Judy H. Cho10, Alan E. Guttmacher1,
Augustine Kong11, Leonid Kruglyak12, Elaine Mardis13, Charles N. Rotimi14, Montgomery Slatkin15, David Valle9,
Alice S. Whittemore16, Michael Boehnke17, Andrew G. Clark18, Evan E. Eichler19, Greg Gibson20, Jonathan L. Haines21,
Trudy F. C. Mackay22, Steven A. McCarroll23 & Peter M. Visscher24

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and
traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the
remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose
research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics
of complex diseases and enhance its potential to enable effective disease prevention or treatment.

M
any common human diseases and traits are known to
cluster in families and are believed to be influenced by
several genetic and environmental factors, but until
recently the identification of genetic variants contributing

to these ‘complex diseases’ has been slow and arduous1. Genome-wide
association studies (GWAS), in which several hundred thousand to
more than a million single nucleotide polymorphisms (SNPs) are
assayed in thousands of individuals, represent a powerful new tool for
investigating the genetic architecture of complex diseases1,2. In the past
few years, these studies have identified hundreds of genetic variants
associated with such conditions and have provided valuable insights
into the complexities of their genetic architecture3,4.

The genome-wide association (GWA) method represents an
important advance compared to ‘candidate gene’ studies, in which
sample sizes are generally smaller and the variants assayed are limited
to a selected few, often on the basis of imperfect understanding of
biological pathways and often yielding associations that are difficult
to replicate5,6. GWAS are also an important step beyond family-based
linkage studies, in which inheritance patterns are related to several
hundreds to thousands of genomic markers. Despite many clear
successes in single-gene ‘Mendelian’ disorders7,8, the limited success
of linkage studies in complex diseases has been attributed to their low
power and resolution for variants of modest effect9–11.

The underlying rationale for GWAS is the ‘common disease,
common variant’ hypothesis, positing that common diseases are
attributable in part to allelic variants present in more than 1–5% of
the population12–14. They have been facilitated by the development of
commercial ‘SNP chips’ or arrays that capture most, although not all,
common variation in the genome. Although the allelic architecture of
some conditions, notably age-related macular degeneration, for the
most part reflects the contributions of several variants of large effect
(defined loosely here as those increasing disease risk by twofold or
more), most common variants individually or in combination confer
relatively small increments in risk (1.1–1.5-fold) and explain only a
small proportion of heritability—the portion of phenotypic variance
in a population attributable to additive genetic factors3. For example,
at least 40 loci have been associated with human height, a classic
complex trait with an estimated heritability of about 80%, yet they
explain only about 5% of phenotypic variance despite studies of tens
of thousands of people15. Although disease-associated variants occur
more frequently in protein-coding regions than expected from their
representation on genotyping arrays, in which over-representation of
common and functional variants may introduce analytical biases, the
vast majority (.80%) of associated variants fall outside coding
regions, emphasizing the importance of including both coding and
non-coding regions in the search for disease-associated variants3.

1National Human Genome Research Institute, Building 31, Room 4B09, 31 Center Drive, MSC 2152, Bethesda, Maryland 20892-2152, USA. 2National Institutes of Health, Building 1,
Room 126, MSC 0148, Bethesda, Maryland 20892-0148, USA. 3Departments of Medicine and Human Genetics, University of Chicago, Room A612, MC 6091, 5841 South Maryland
Avenue, Chicago, Illinois 60637, USA. 4Duke University, The Institute for Genome Sciences and Policy (IGSP), Box 91009, Durham, North Carolina 27708, USA. 5National Human
Genome Research Institute, Office of Population Genomics, Suite 4076, MSC 9305, 5635 Fishers Lane, Rockville, Maryland 20892-9305, USA. 6Department of Epidemiology, Harvard
School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA. 7University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill
Hospital, Old Road, Oxford OX3 7LJ, UK, and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. 8GlaxoSmithKline, 709
Swedeland Road, King of Prussia, Pennsylvania 19406, USA. 9McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway
BRB579, Baltimore, Maryland 21205, USA. 10Yale University, Department of Medicine, Division of Digestive Diseases, 333 Cedar Street, New Haven, Connecticut 06520-8019, USA.
11deCODE Genetics, Sturlugata 8, Reykjavik IS-101, Iceland. 12Lewis-Sigler Institute for Integrative Genomics, Howard Hughes Medical Institute, and Department of Ecology and
Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. 13The Genome Center, Washington University School of Medicine, 4444 Forest Park Avenue, Campus
Box 8501, Saint Louis, Missouri 63108, USA. 14National Human Genome Research Institute, Center for Research on Genomics and Global Health, Building 12A, Room 4047, 12 South
Drive, MSC 5635, Bethesda, Maryland 20892-5635, USA. 15Department of Integrative Biology, University of California, 3060 Valley Life Science Building, Berkeley, California 94720-
3140, USA. 16Stanford University, Health Research and Policy, Redwood Building, Room T204, 259 Campus Drive, Stanford, California 94305, USA. 17Department of Biostatistics,
University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, USA. 18Department of Molecular Biology and Genetics, 107 Biotechnology Building, Cornell
University, Ithaca, New York 14853, USA. 19Howard Hughes Medical Institute and University of Washington, Department of Genome Sciences, 1705 North-East Pacific Street, Foege
Building, Box 355065, Seattle, Washington 98195-5065, USA. 20University of Queensland, School of Biological Sciences, Goddard Building, Saint Lucia Campus, Brisbane, Queensland
4072, Australia. 21Vanderbilt University, Center for Human Genetics Research, 519 Light Hall, Nashville, Tennessee 37232-0700, USA. 22Department of Genetics, North Carolina
State University, Box 7614, Raleigh, North Carolina 27695, USA. 23Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 0330, Boston, Massachusetts
02115, USA. 24Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia.

Vol 461j8 October 2009jdoi:10.1038/nature08494

747
 Macmillan Publishers Limited. All rights reserved©2009

Manolio et al., Nature 2009
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Genetics: Potential Reasons for Missing Heritability

Polygenic architectures

Most current analyses neglect additive or multiplicative effects between loci → need for
systems biology perspective

Small effect sizes

Not detectable with small sample sizes

Phenotypic effect of other genetic, epigenetic or non-genetic factors

Genetic properties ignored so far, e.g. rare SNPs

Chemical modifications of the genome

Environmental effect on phenotype
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Machine Learning in Genetics I

Moving to a Systems Biology Perspective

Multi-locus models:

Algorithms to discover trait-related systems of genetic loci

Increasing sample size:

Algorithms that support large-scale genotyping and phenotyping

Deciding whether additional information is required:

Tests that quantify the impact of additional (epi)genetic factors
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Machine Learning in Genetics II

Moving to a Systems Biology Perspective

Multi-locus models:

Efficient algorithms for discovering trait-related SNP pairs: Epistasis discovery (KDD 2011, Human

Heredity 2012)

Increasing sample size:

Large-scale genotyping in A. thaliana (Nature Genetics 2011)

Automated image phenotyping of guppy fish (Bioinformatics 2012)

Automated image phenotyping of human lungs (IPMI 2013)

Deciding whether additional information is required:

Assessing the stability of methylation across generations of Arabidopsis lab strains (Nature 2011)
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Epistasis: Computational Bottlenecks

Scale of the problem

Typical datasets include order 105 − 107 SNPs.

Hence we have to consider order 1010 − 1014 SNP pairs.

Enormous multiple hypothesis testing problem.

Enormous computational runtime problem.
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Epistasis: Common approaches in the literature

Exhaustive enumeration

Only with special hardware such as Cloud Computing or GPU implementations (e.g.

Kam-Thong et al., EJHG 2010, ISMB 2011, Hum Her 2012)

Filtering approaches

Statistical criterion, e.g. SNPs with large main effect (Zhang et al., 2007)

Biological criterion, e.g. underlying PPI (Emily et al., 2009)

Index structure approaches

fastANOVA, branch-and-bound on SNPs (Zhang et al., 2008)

TEAM, efficient updates of contingency tables (Zhang et al., 2010)
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Multi-Locus Models: Discovering Trait-Related Interactions
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Problem statement

Find the pair of SNPs most correlated with a binary phenotype

argmax
(i ,j)

|r(xi � xj , y)|

xi and xj represent one SNP each and y is the phenotype; xi , xj , y are all m-dimensional
vectors, given m individuals.

There can be up to n = 107 SNPs, and order 1014 SNP pairs.

Existing approaches: low recall or worst-case O(n2) time
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Difference in Correlation for Epistasis Detection

We phrase epistasis detection as a difference in correlation problem:

argmax
i ,j

|ρcases(xi , xj)− ρcontrols(xi , xj)|. (1)

Different degree of linkage disequilibrium of two loci in cases and controls
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The Lightbulb Algorithm (Paturi et al., COLT 1989)

Maximum correlation

The lightbulb algorithm tackles the maximum correlation problem on an m× n matrix A
with binary entries:

argmax
i ,j

|ρA(xi , xj)|. (2)

Quadratic runtime algorithm

As in epistasis detection, the problem can be solved by naive enumeration of all n2

possible solutions.
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The Lightbulb Approach

Lightbulb algorithm

1 Given a binary matrix A with m rows and n columns.

2 Repeat l times:

Sample k rows
Increase a counter for all pairs of columns that match on these k rows.

3 The counters divided by l give an estimate of the correlation P(xi = xj).

Subquadratic runtime

With probability near 1, the lightbulb algorithm retrieves the most correlated pair in

O(n
1+

ln c1
ln c2 ln2 n), where c1 and c2 are the highest and second highest correlation score.
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Difference Between the Epistasis and Lightbulb Problem Setting

Discrepancies

Difference in correlation

SNPs are non-binary in general

Pearson’s correlation coefficient
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Step 1: Difference in Correlation

Theorem

Given a matrix of cases A and a matrix of controls B of identical size.

Finding the maximally correlated pair on(
A A
B 1− B

)
(3)

and on (
A 1− A
B B

)
(4)

is identical to

argmax
i ,j

|ρA(xi , xj)− ρB(xi , xj)|. (5)
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Step 2: Locality Sensitive Hashing (Charikar, 2002)

Given a collection of vectors in Rm we choose a random vector r from the m-dimensional
Gaussian distribution. Corresponding to this vector r, we define a hash function hr as
follows:

hr(xi ) =

{
1 if r>xi ≥ 0

0 if r>xi < 0
(6)

Theorem

For vectors xi , xj , Pr [hr(xi ) = hr(xj)] = 1−
θ(xi , xj)

π
, where θ(xi , xj) is the angle

between the two vectors xi and xj .

Department Biosystems Karsten Borgwardt ITWM Kaiserslautern September 30, 2016 32 / 76



Step 3: Pearson’s Correlation Coefficient

Link between correlation and cosine

Karl Pearson defined the correlation of 2 vectors xi , xj in Rm as

ρ =
cov(xi , xj)

σxiσxj

, (7)

that is the covariance of the two vectors divided by their standard deviations. An
equivalent geometric way to define it is:

ρ = cos(θ(xi − x̄i , xj − x̄j)), (8)

where x̄i and x̄j are the mean value of xi and xj , respectively.

Department Biosystems Karsten Borgwardt ITWM Kaiserslautern September 30, 2016 33 / 76



The Lightbulb Epistasis Algorithm (Achlioptas et al., KDD 2011)

Algorithm

1 Binarize original matrices A0 and B0 into A and B by locality sensitive hashing.

2 Compute maximally correlated pair p1 on

(
A A
B 1− B

)
via lightbulb.

3 Compute maximally correlated pair p2 on

(
A 1− A
B B

)
via lightbulb.

4 Report the maximum of p1 and p2.
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Experiments: Arabidopsis SNP dataset

Results on Arabidopsis SNP dataset
# SNPs Measurements Pairs Exponent Speedup Top 10 Top 100 Top 500 Top 1K

100,000 8,255,645 8,186,657 1.38 611 1.00 0.86 0.82 0.80
100,000 52,762,001 51,732,700 1.54 97 1.00 1.00 0.99 0.98

Runtime

Runtime is empirically O(n1.5).

Epistasis detection on the human genome would require 1 day of computation on a
typical desktop PC.
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Experiments: Runtime versus Recall
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Multi-Locus Models: Current Work

Other important aspects

Including prior knowledge on relevance of SNPs (Limin Li et al., ISMB 2011)

Accounting for relatedness of individuals (Rakitsch et al., Bioinformatics 2012)

Measuring statistical significance (Sugiyama et al., arxiv 2014)

Modelling correlations between multiple phenotypes (Rakitsch et al., NIPS 2013)
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Increasing Sample Size: Genotyping (Cao et al., Nat. Gen. 2011)
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80 fully sequences genomes from
A. thaliana (3 million SNPs)

4 strains with 250.000 SNPs

Can we predict the remaining
SNPs?

Result

Employed BEAGLE to predict
missing SNPs in 4 strains

Missing sites can be accurately
predicted (>96% accuracy)
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Increasing Sample Size: Phenotyping (Karaletsos et al., Bioinf. 2012)

Setup

Guppy image collections

Re-occurring color patterns are
phenotypes

How to phenotype the guppies
automatically?

Result

Proposed Markov Random Field
for pattern discovery

Recovers color patterns found by
manual annotation
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Increasing Sample Size: Phenotyping (Feragen et al., NIPS 2013c)

Setup

Collections of CT-scans of human
lungs

Structural differences may be
linked to disease (COPD)

How to measure differences in
lung structure?

Result

Proposed novel, efficient similarity
measure on geometric trees (tree
kernel)
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Additional Factors: Epigenetic Influences (Becker et al., Nature 2011, Hagmann et al.,

PLoS Genetics, 2015)

Founder plant

Generation 0

Generation 3

Generation 31

Generation 32

29 39 49 59 69 79 89 99 109 119

4 8

Setup

33 generations of lab strains of A.
thaliana

How stable is the methylation
state of genome positions across
generations?

Result

Position-specific methylation
varies greatly

Region-wide methylation is more
stable
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An Online Resource for Machine Learning on Complex Traits

We published easyGWAS (https://easygwas.org/), a machine learning platform for
analysing complex traits (Grimm et al., arXiv 2012):
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The Evolution of Bioinformatics

Future of Bioinformatics: Personalized Medicine
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Personalized Medicine: Biomarker Discovery

Personalized Medicine

Tailoring medical treatment to the molecular properties of a patient

Biomarker Discovery

Detecting molecular components that are indicative of disease outbreak, progression or
therapy outcome

Biomarker

The term ‘biomarker’, short for ‘biological marker’, refers to a broad subcategory of medical
signs — that is, objective indications of medical state observed from outside the patient —
which can be measured accurately and reproducibly (Strimbu and Tavel, 2010).
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Personalized Medicine: Where We Stand

Producing molecular data: Sequencing costs

USD 300,000,000 cost of sequencing a human genome in 2001
USD 1,000 cost of sequencing a human genome in 2014

Storing molecular data: Electronic health records

29% of U.S. physicians used an electronic health system in 2006
93% reported actively using medical records in 2013

Using molecular data: Products

13 prominent examples of personalized medicine drugs, treatments and diagnostics products
available in 2006
113 prominent examples of personalized medicine drugs, treatments and diagnostics products
available in 2014

Source: http://www.ageofpersonalizedmedicine.org/
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Significant Pattern Mining
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Biomarker Discovery
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Biomarker Discovery as a Pattern Mining Problem

Finding groups of disease-related molecular factors

Single genetic variants, gene expression levels, protein abundancies are often not
sufficiently indicative of disease outbreak, progression or therapy outcome.

Searching for combinations of these molecular factors creates an enormous search space,
and two inherent problems:

1 Computational level: How to efficiently search this large space?
2 Statistical level: How to properly account for testing an enormous number of hypotheses?

The vast majority of current work in this direction (e.g. Achlioptas et al., KDD 2011)
focuses on Problem 1, the computational efficiency.

But Problem 2, multiple testing, is also of fundamental importance!
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Biomarker Discovery as a Pattern Mining Problem

Feature Selection: Find features that distinguish classes of objects

Pattern Mining: Find higher-order combinations of binary features, so-called patterns,
to distinguish one class from another
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Pattern Mining

Definition of a pattern

A pattern is a set of dimensions S .

A binary vector x contains a pattern S if
∏
i∈S

xi = 1, where xi is dimension i of x.

Definition of a frequent pattern

Assume we are given n vectors {xj}nj=1.

If at least θ vectors contain pattern S , then S is a frequent pattern.

θ is a pre-defined frequency threshold.
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Pattern Mining

Frequent pattern mining

Analogous definitions for frequent subgraph mining and frequent substring mining.

Numerous branch-and-bound algorithms have been proposed for finding frequent
patterns (Aggarwal and Han, 2014).

Problem statement: Significant Pattern Mining

Assume we are given n vectors {xj}nj=1, each of which has a binary class label yj ∈ 0, 1.

Our goal is to find all patterns S that are statistically significant enriched in one of
the two classes y = 0 or y = 1.
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Statistical Significance and Testability

Fisher’s exact test

Contingency Table

|S ∈ x| |S /∈ x|
y = 0 a n0 − a n0

y = 1 x − a n − n0 − x + a n − n0

x n − x n

A popular choice is Fisher’s exact test to test whether S is overrepresented in one of the
two classes.

The common way to compute p-values for Fisher’s exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x , n0, n).
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Statistical Significance and Testability

Multiple testing correction in pattern mining

The number of candidate patterns grows exponentially with the cardinality of the
pattern.

If we do not correct for multiple testing, α per cent of all candidate patterns will be false
positives.

If we do correct for multiple testing, e.g. via Bonferroni correction (
α

#tests
), then we

lose any statistical power.
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Statistical Significance and Testability

Tarone’s trick

Tarone’s insight: When working with discrete test statistics (e.g. Fisher’s exact test),
there is a minimum p-value that a given pattern can obtain, based on its total frequency.

Tarone’s trick (1990): Ignore those patterns in multiple testing correction, for which the
minimum p-value is larger than the Bonferroni-corrected significance threshold.

If the p-values are conditioned on the total marginals (e.g. in Fisher’s exact test),
Tarone’s trick does not increase the Family Wise Error rate.
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Mining Significant Patterns

Tarone’s approach (1990)

For a discrete test statistics T (S) for a pattern S , such as in Fisher’s exact test, there is
a minimum obtainable p-value, pmin(S).

For some S , pmin(S) >
α

m
. Tarone refers to them as untestable hypotheses Ū .

Tarone’s strategy: Ignore untestable hypotheses Ū when counting the number of tests
m for Bonferroni correction.

If the p-values of the test are conditioned on the total marginals (as in Fisher’s exact
test), this does not affect the Family-Wise Error Rate.

Difficulty: There is an interdependence between m and Ū .
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Department Biosystems Karsten Borgwardt ITWM Kaiserslautern September 30, 2016 54 / 76



Mining Significant Patterns

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level
α

k
.

Then the optimization problem is

min k

s. t. k ≥ m(k)
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Mining Significant Patterns

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level
α

k
.

procedure Tarone

k := 1;
while k < m(k) do

k := k + 1;

return k
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Mining Significant Patterns

Terada’s link to frequent itemset mining (Terada et al., PNAS 2013)

For 0 ≤ x ≤ n1, the minimum p-value pmin(S) decreases monotonically with x .

One can use frequent itemset mining to find all S that are testable at level α, with
frequency ψ−1(α).

They propose to use a decremental search strategy:

procedure Terada’s decremental search (LAMP)

k := ”very large”;
while k > m(k) do

k := k − 1;
m(k) := frequent itemset mining(D, ψ−1(

α

k
));

return k + 1
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Mining Significant Patterns
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Example: PTC dataset (Helma et al., 2001)
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Significant Subgraph Mining (Sugyiama et al., SDM 2015)

Significant Subgraph Mining

Each object is a graph.

A pattern is a subgraph in these graphs.

Typical application in Drug Development: Find subgraphs that discriminate between
molecules with and without drug effect.

Counting all tests (= all patterns) requires exponential runtime in the number of nodes.
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Significant Subgraph Mining (Sugyiama et al., SDM 2015)

Incremental search with early stopping

procedure Incremental search with early stopping

θ := 0
repeat

θ := θ + 1; FSθ := 0;
repeat

find next frequent subgraph at frequency θ
FSθ := FSθ + 1

until (no more frequent subgraph found) or (FSθ >
α

ψ(θ)
)

until FSθ ≤
α

ψ(θ)
return ψ(θ)

α

ψ(θ)
is the maximum correction factor, such that subgraphs with frequency θ can be significant at level ψ(θ).
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Significant Subgraph Mining on PTC Dataset
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Significant Subgraph Mining: Correction Factor
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Significant Subgraph Mining: Runtime
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Dependence between hypotheses

As patterns are often in sub-/superpattern-relationships, they do not constitute
independent hypotheses.

Informally: The underlying number of hypotheses may be much lower than the raw
count.

Westfall-Young-Permutation tests (Westfall and Young, 1993), in which the class labels
are repeatedly permuted to approximate the null distribution, are one strategy to take
this dependence into account.

Computational problem: How to efficiently perform these thousands of permutations?

There is one existing approach, FastWY (Terada et al., ICBB 2013), which suffers from
either memory or runtime problems.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

The Algorithm

1 Input: Transactions D, class labels y, target FWER α, number of permutations jp.

2 Perform jp permutations of the class label y and store each permutation as cj .

3 Initialize θ := 1 and δ∗ := ψ(θ) and p
(j)
min := 1.

4 Perform a depth first search on the patterns:

Compute the p-value of pattern S across all permutations, update p
(j)
min if necessary.

Update δ∗ by α-quantile of p
(j)
min, and increase θ accordingly.

Process all children of S with frequency ≥ ψ−1(δ∗).

5 Output: Corrected significance threshold δ∗.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Speed-up tricks of Westfall-Young light

Follows incremental search strategy rather than decremental search strategy of FastWY

Performs only one iteration of frequent pattern mining

Does not store the occurrence list of patterns

Does not compute the upper 1− α quantile of minimum p-values exactly.

Reduces the number of cell counts that have to be evaluated

Shares the computation of p-values across permutations
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Westfall-Young light

Runtime
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Westfall-Young light

Final frequency threshold (support)
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Westfall-Young light

Peak memory usage
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Westfall-Young light

Better control of the Family-wise error rate (Enzymes)
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Detecting “Genetic Heterogeneity” (Llinares et al., ISMB 2015b)
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Random variable

Detecting intervals significantly associated with phenotypic variation

Find subsequences which tend to contain at least one minor allele in one of the two
phenotypic groups
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Education: Our Marie Curie Initial Training Network

Goal: Enable medical treatment tailored to patients’ molecular properties

Plan: Build a research community at the interface of Machine Learning and data-driven
Medicine

First step: Marie Curie Initial Training Network (ITN)

Topic: Machine Learning for Personalized Medicine (MLPM)
Duration: 4 years, 2013-2016
13 early-stage researchers + 1 postdoc in 12 labs at 10 nodes in 6 countries
3.75 million EUR funding for PhD students and training events
Research programmes:

Biomarker Discovery
Data Integration
Causal Mechanisms of Disease
Gene-Environment Interactions

Follow us on mlpm.eu
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Summary

Machine Learning in Bioinformatics

Classic Bioinformatics

Comparing graphs in Chemoinformatics

Current Bioinformatics

High-dimensional feature selection in Statistical Genetics

Future Bioinformatics

Significant pattern mining for biomarker discovery in Personalized Medicine
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Thank You

Postdocs and PhD students:

Dean Bodenham

Lukas Folkman

Udo Gieraths

Thomas Gumbsch

Anja Gumpinger

Xiao He

Felipe Llinares Lopez

Laetitia Papaxanthos

Damian Roqueiro

Caroline Weis







Sponsors:

Krupp-Stiftung

Marie-Curie-FP 7

Starting Grant (SNSF’s ERC backup
scheme)
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Thank You

bsse.ethz.ch/mlcb
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