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Machine Learning and Personalized Medicine

Goals

m Machine Learning tries to detect statistical dependencies in large datasets.
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Machine Learning and Personalized Medicine

Goals

m Machine Learning tries to detect statistical dependencies in large datasets.

%@

m Personalized Medicine tries to exploit wealth of health data for improved diagnosis,
prognosis and therapy decisions, tailored to the properties of each patient.
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Machine Learning in Medicine

Key Topics
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Machine Learning in Medicine

Key Topics

m Automation of diagnoses
Original Investigation
December 12, 2017

Diagnostic Assessment of Deep Learning
Algorithms for Detection of Lymph Node
Metastases in Women With Breast Cancer

Babak Ehteshami Bejnordi, MS'; Mitko Veta, PhD2; Paul Johannes van Diest, MD, PhD3; et al

» Author Affiliations | Article Information
JAMA. 2017;318(22):2199-2210. doi:10.1001/jama.2017.14585
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Machine Learning in Medicine
Key Topics

m Automation of diagnoses

m Biomarker discovery

Department Biosystems Karsten Borgwardt

Machine learning of neural
representations of suicide and emotion
concepts identifies suicidal youth

Marcel Adam Just , Lisa Pan, Vladimir L. Cherkassky, Dana L. McMakin, Christine Cha, Matthew K.
Nock & David Brent

Nature Human Behaviour 1,911-919 (2017) Received: 06 February 2017
doi:10.1038/541562-017-0234-y Accepted: 04 October 2017
Download Citation Published online: 30 October 2017
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Machine Learning in Medicine

Key Topics

m Automation of diagnoses

Roche to buy Flatiron Health for $1.9 billion to expand cancer care ...

_ Reuters - 15.02.2018

Roche to buy Flatiron Health for $1.9 billion to expand cancer care portfolio ... S)
N said on Thursday it would buy the rest of U.S. cancer data company Flatiron Health
for $1.9 billion to speed development of cancer medicines and support its efforts to ...
Privately held Flatiron, backed by Alphabet Inc (GOOGL.

m Biomarker discovery

m Biomedical data management

Department Biosystems Karsten Borgwardt Roche GPSM, Basel | April 18, 2018 | 3 / 46



Machine Learning in Medicine
Key Topics

m Automation of diagnoses

m Biomarker discovery

A new technique:
Combinatorial Association
Mapping

m Biomedical data management

Department Biosystems Karsten Borgwardt

Disease Genotype

=3
°

Individual 1

°

=qe '=e =o' =xqo

Individual 2 1

Individual 3 o

0

Individual 4

°

Individual 5 1

L - . Sequence variation
Significant association between

phenotype and genotype?

Roche GPSM, Basel | April 18, 2018 | 3 / 46



Machine Learning in Medicine

Key Topics

m Automation of diagnoses
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m Biomarker discovery

A new technique:
Combinatorial Association
Mapping

m Biomedical data management

Software development for the
Life Sciences: easyGWAS
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Combinatorial Association Mapping
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Association Mapping: Mapping Phenotypes to the Genome
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A genome-wide association study (GWAS) examines whether variation in the genome (in
form of single nucleotide polymorphisms, SNPs) correlates with variation in the

phenotype.
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Association Mapping: Missing Heritability

m Since 2001: More than 59,000 trait-related loci from GWAS (cwas catalog, March 6, 2018)

m Problem: Phenotypic variance explained still disappointingly low

Vol 461[8 October 2009/doi10.1038/ nature08494. nature

REVIEWS

Finding the missing heritability of complex
diseases

Teri A. Manolio', Francis S. Collins’, Nancy J. Cox’, David B. Goldstein*, Lucia A. Hindorff*, David J. Hunter",
Mark I. Mccmhy7 Erin M. Ramos®, Lon R. Cardon®, Avav'mda chakravani" Judy H. Cho'®, Alan E. Guttmacher',
Augustine Kong'", Leonid Kruglyak.”, Elaine Mardis'", Charles N. Rotimi'", Montgomery Slatkin'", David Valle’
Alices. Whittemore!”, Michael Boehrke'’, Andrew G. Clark!", EvanE. Eichler ", Greg Gibson®, Jonathan . Haines"",
Trudy F. C. Mackay™, Steven A. McCarroll** & Peter M. Visscher™

traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
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traits, and have provided valuable insghts into their genetic architecture, Most variants identified so far confer elatively

m Potential reasons:
m Polygenic architectures of complex diseases
m Small effect sizes

Incomplete integration of important genetic, epigenetic or non-genetic properties
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traits, and have provided valuable insghts into their genetic architecture, Most variants identified so far confer elatively

m Potential reasons:
m Polygenic architectures of complex diseases — Epistasis
m Small effect sizes

Incomplete integration of important genetic, epigenetic or non-genetic properties
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Association Mapping: Missing Heritability
Epistasis as a Potential Reason

m Most current analyses neglect interactive effects between loci

m Need for approaches for combinatorial association mapping

Mackay and Moore Genome Medicine 2014, 6:42

http://genomemedicine.com/content/6/6/42 q Genome Medicine

COMMENT

Why epistasis is important for tackling complex
human disease genetics

Trudy FC Mackay'™ and Jason H Moore?

and the effects of alleles at these loci are highly sensitive

Editorial summai R N . o
i to the environmental circumstances to which the indivi-

Epistasis has been dismissed by some as having little duals are exposed. Quantitative variation in phenotypes
role in the genetic architecture of complex human and disease risk must result in part from the perturbation
disease. The authors argue that this view is the result of highly dynamic, interconnected and non-linear net-
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Combinatorial Association Mapping
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m Computational challenge: Combinatorial explosion of the number of candidate sets

m Statistical challenge: Combinatorial explosion of the number of association tests
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Combinatorial Association Mapping

Multiple Hypothesis Testing Problem

m What if we consider associations of groups of s SNPs with the phenotype?

m This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k € O(f®)), where f is the number of SNPs.

m If unaccounted for, a per cent of all SNP sets might be considered significantly
associated by random chance.

m It is imperative to control for multiple testing, e.g. the family-wise error rate!

. e : -
m If accounted for, e.g. by Bonferroni correction (E) we might lose all statistical power.
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Combinatorial Association Mapping

Multiple Hypothesis Testing Problem

What if we consider associations of groups of s SNPs with the phenotype?

This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k € O(f®)), where f is the number of SNPs.

If unaccounted for, a per cent of all SNP sets might be considered significantly
associated by random chance.

It is imperative to control for multiple testing, e.g. the family-wise error rate!
. e . -
If accounted for, e.g. by Bonferroni correction (E) we might lose all statistical power.

Long considered unsolvable dilemma
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Combinatorial Association Mapping as a Data Mining Problem
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m Feature Selection: Find features that distinguish classes of objects
m Pattern Mining: Find higher-order combinations of binary features, so-called patterns,
to distinguish one class from another
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Combinatorial Association Mapping as a Data Mining Problem
Pattern

m D is a dataset of n patients. The /-th patient is represented
by a binary vector d() € {0,1}" and a class label y; € {0,1}.
m We choose a subset S of all features F in a dataset: S C F.

Cor

m Then an object d) includes the pattern S if H d(t) =1,

. teS
otherwise not.

Problem Statement: Significant Pattern Mining

m We want to find all subsets S such that there is a statistically significant association

between H d)(t) and y; for i € {1,...,n}, while controlling the family-wise error rate
teS

at level a.
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Significant Pattern Mining

Tarone's trick

m Contingency table for testing enrichment of a pattern in one of two classes

Pattern present | Pattern absent
y=0 a ng—a m
y=1 X—a n—n—x4+aln—m
X n—x n

m A popular choice is Fisher's exact test to test whether the pattern is overrepresented in
one of the two classes.

m The common way to compute p-values for Fisher's exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x, n1, n).
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Significant Pattern Mining

Tarone's trick

m Contingency table for testing enrichment of a pattern in a class

Pattern present | Pattern absent
y=0 a ni—a m
y=1 X—a n—m-—x+aln—m
X n—x n

m Tarone (1990) noted that when working with discrete test statistics, e.g. Fisher's exact

test, there is a minimum p-value that a pattern can achieve.

. . @
m There are many untestable hypotheses whose minimum p-value is not smaller than —

Pa

m Only the remaining m(k) testable hypotheses can reach significance at all.

m One can correct for m(k) instead of k. As often m(k) << k, this greatly improves

statistical power.
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Example: PTC dataset (Helma et al., 2001)
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Significant Pattern Mining

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at significance level %.

m m(k) is a function of k and we require kK > m(k) to correct for all testable hypotheses.

m Then the optimization problem is

min k
s. t. k> m(k)
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Significant Pattern Mining

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at level %.

procedure Tarone

k=1

while k < m(k) do
k=k+1;

return k
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Significant Pattern Mining

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at level %.

procedure Tarone

k=1

while k < m(k) do
k=k+1;

return k

m How to efficiently compute m(k) without running through all O(f®) possible hypotheses?
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Significant Pattern Mining

Data mining challenge

m How to efficiently find m(k) without running through all O(f*®) possible hypotheses?
m Solution: Minimum p-value is determined by the frequency of a pattern.

m One can use frequent pattern mining algorithms from Data Mining to enumerate all
patterns that pass a certain p-value threshold (terada et al., PNAS 2013):

m frequent itemset mining(D, ) enumerates all patterns in a dataset D of frequency at
least 6.
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Significant Pattern Mining

m Frequency versus minimum p-value
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Significant Pattern Mining
Tarone's approach with frequent itemset mining

m Assume k is the number of tests that we correct for.
: N o
m m(k) is the number of testable hypotheses at significance level X

procedure Tarone (D, o)
k=1
while k < m(k) do
ki=k+1; o
m(k) := frequent itemset mining(D,gb(?));

return k
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Significant Pattern Mining
Tarone's approach with frequent itemset mining

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at significance level
procedure Tarone (D, a)
k=1
while k < m(k) do
ki=k+1; o
m(k) := frequent itemset mining(D,gb(?));

return k

o, . . . «
m Note: ¢(Z) is the minimum frequency of a pattern that is testable at level rE
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Significant Pattern Mining
Tarone's approach with frequent itemset mining

m Assume k is the number of tests that we correct for.
: N o
m m(k) is the number of testable hypotheses at significance level X

procedure Tarone (D, o)
k=1
while k < m(k) do
ki=k+1; o
m(k) := frequent itemset mining(D,gb(?));

return k

o, . . . «
m Note: ¢(Z) is the minimum frequency of a pattern that is testable at level rE

a, . . .. . .
m For small k, ¢(;) is small. Frequent itemset mining will be extremely expensive!
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

How to efficiently find the optimal k7 (spm 2015)
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

How to efficiently find the optimal k7 (spm 2015)
m We proposed an efficient search strategy with early termination criterion (when m(k) > k).
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

How to efficiently find the optimal k7 (spm 2015)
m We proposed an efficient search strategy with early termination criterion (when m(k) > k).

Patterns are in subset/superset relationships. How to account for this dependence
between tests? (kob 2015)

m We perform Westfall-Young Permutations to take the dependence into account.
m By dynamically updating the frequency threshold, we only require 1 single application of
frequent itemset mining even for 10,000 permutations.
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

Can we retain efficiency and statistical power when accounting for categorical covariates
such as age and gender? (vips 2016)
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

Can we retain efficiency and statistical power when accounting for categorical covariates
such as age and gender? (vips 2016)

m We extended Tarone's trick to the Cochran-Mantel-Haenszel-test for stratified contingency
tables.
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

Can we retain efficiency and statistical power when accounting for categorical covariates
such as age and gender? (nips 2016)
m We extended Tarone's trick to the Cochran-Mantel-Haenszel-test for stratified contingency
tables.
Can we develop new combinatorial association mapping approaches based on Tarone's

trick? (isMB 2015, OUP Bioinformatics 2017, ISMB 2018)
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tables.
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Combinatorial Association Mapping for Genetic Heterogeneity Discovery
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Genetic Heterogeneity Discovery
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Genetic Heterogeneity Discovery

Genetic heterogeneity

m Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.

Cases

K 0
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SNPs

pattern

m Specific problem studied here: Find a genomic interval such that having
®m a rare variant,
B a recessive genotype, or
® a minor allele

in this interval is associated with the disease phenotype.
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Genetic Heterogeneity Discovery

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

m Current state of the art: Restrict search to intervals that correspond to genes or exons
(Lee et al., AJHG 2014).

m Our goal is to search for intervals that may exhibit genetic heterogeneity, while
m allowing for arbitrary start and end points of the intervals,

m properly correcting for the inherent multiple testing problem, and
B retaining statistical power and computational efficiency.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Genetic Heterogeneity Discovery as a Pattern Mining Problem

Cases
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pattern

m We model the search as a pattern mining problem: Given an interval, an individual
contains a pattern, if it has at least one minor allele in this interval.

m An interval is represented by its maximum value. The longer an interval, the more likely

it is that this maximum is 1.

m Association is measured by Fisher's exact test, and we control the family-wise error rate
using Tarone's method.
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Department Biosystems

FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m If too many individuals have a particular pattern, the corresponding interval is not

testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Pruning criterion: If a pattern is too frequent to be testable, then none of the

superintervals of the corresponding interval is testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

m Search strategy: We search intervals of increasing length / and prune untestable
superintervals.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

m Search strategy: Specifically, for each interval of length /, we prune it if at least one
of its two length / — 1 subintervals is too frequent to be testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

70% (152)
Novel Intervals
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18.9% (41)

6.9% (15)

m FAIS detects 217 significant intervals on 21 binary phenotypes from Arabidopsis
thaliana, with 214,051 SNPs and up to 194 lines (awell et al., Nature 2010).
m 70% would have been missed by univariate approaches (UFE and LMM).
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Combinatorial Association Mapping: Summary and Outlook

Summary

m Significant Pattern Mining was long considered an unsolvable problem.
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Next challenges

m How to detect genetic heterogeneity in biological pathways?
m How to control the False Discovery Rate?

m How to deal with non-binary features and non-binary phenotypes?
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What's next?
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Biomedical Software Development
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easyGWAS

m We have been developing easygwas.org (Grimm et al., 2017), a cloud platform for

genome-wide association studies (1362 users as of April 11, 2018):
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easygwas.org

Biomarker Discovery for Sepsis
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Personalized Swiss Sepsis Study

m Consortium of 22 research labs and 5 university hospitals in Switzerland

m Goal: Predict sepsis and sepsis-related mortality
m Approach: Integrate clinical data and molecular data for joint biomarker discovery

Adrian Egli Karsten Borgwardt
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Predicting Sepsis

Background: What is sepsis and why is it relevant?

m Sepsis is a life-threatening organ dysfunction, caused by a dysregulated host response to
infection (singer et al., 2016).

m |ldentification of a bacterial species in blood still takes between 24h and 48h after blood
sampling (osthoff et al., 2017).

m From onset each hour of delayed effective antibiotic treatment increases mortality (Ferrer et

al., 2014).
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Background: What is sepsis and why is it relevant?

m Sepsis is a life-threatening organ dysfunction, caused by a dysregulated host response to
infection (singer et al., 2016).

m |ldentification of a bacterial species in blood still takes between 24h and 48h after blood
sampling (osthoff et al., 2017).

m From onset each hour of delayed effective antibiotic treatment increases mortality (Ferrer et

al., 2014).

— The first hours of sepsis are of critical importance.

— Currently, when sepsis is detected, organ damage has already progressed.

— Detecting and treating sepsis earlier and better identifying high-risk subgroups
could be of highest clinical impact.
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Predicting Sepsis

Dataset: MIMIC (https://mimic.physionet.org)

m Labels:

m Case if sepsis-3 criteria (inger et al, 2016) fulfilled during ICU stay (at least 4 hours after
admission) using the notion 'suspicion of infection’ as defined in (seymour et al., 2016)

m Control if no suspicion of infection (at least not during ICU stay and the 2 preceding weeks)

m SOFA increase evaluated as the maximum SOFA of the 3d window around suspicion of
infection (-2 to +1 days) compared to baseline SOFA (3d window before that).

Features: In-ICU time series of heart rate, systolic blood pressure, and respiratory rate.

Sample size: 355 case ICU stays, 21,079 controls (sampling 355)

Exclusion criteria: Age < 15, CareVue logging (insufficient detail), chartvalues or
in/out-time unavailable.
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Predicting Sepsis
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m We detect patterns in respiratory rate time series that are statistically significantly
associated with sepsis (Bock et al., ISMB 2018 - in press).
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Data Mining in the Life Sciences
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Data Mining in Genetics, Medicine and the Life Sciences

Outlook

m Automation, biomarker discovery, and biomedical data management will remain key
research topics.
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Data Mining in Genetics, Medicine and the Life Sciences
Outlook

m Automation, biomarker discovery, and biomedical data management will remain key
research topics.

m Data growth in three dimensions will pose extreme new challenges in Data Mining in
Genetics and Medicine:

m Population-scale datasets of individuals
m Life-long recordings of health state
m Highest-resolution information of the health state

m How to mine (handle and use) this data?

m Many branches of the Life Sciences face very similar or analogous problems.

Plenty of opportunities for Data Mining in the Life Sciences
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Thank you

» L | epree

il

m Marie-Curie-Initial Training Network for ‘Machine Learning for Personalized Medicine’
(mlpm.eu, 2013-2016)

m Starting Grant (ERC-Backup Scheme of the SNSF)

m Alfried-Krupp-Award for Young Professors

m SPHN-PHRT Driver Project ‘Personalized Swiss Sepsis Study’

http://www.bsse.ethz.ch/mlcb
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