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Machine Learning and Personalized Medicine

Goals

Machine Learning tries to detect statistical dependencies in large datasets.

Personalized Medicine tries to exploit wealth of health data for improved diagnosis,
prognosis and therapy decisions, tailored to the properties of each patient.
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1 A new technique:
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Association Mapping: Mapping Phenotypes to the Genome
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A genome-wide association study (GWAS) examines whether variation in the genome (in
form of single nucleotide polymorphisms, SNPs) correlates with variation in the
phenotype.
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Association Mapping: Missing Heritability

Since 2001: More than 59,000 trait-related loci from GWAS (GWAS catalog, March 6, 2018)

Problem: Phenotypic variance explained still disappointingly low

REVIEWS

Finding the missing heritability of complex
diseases
Teri A. Manolio1, Francis S. Collins2, Nancy J. Cox3, David B. Goldstein4, Lucia A. Hindorff5, David J. Hunter6,
Mark I. McCarthy7, Erin M. Ramos5, Lon R. Cardon8, Aravinda Chakravarti9, Judy H. Cho10, Alan E. Guttmacher1,
Augustine Kong11, Leonid Kruglyak12, Elaine Mardis13, Charles N. Rotimi14, Montgomery Slatkin15, David Valle9,
Alice S. Whittemore16, Michael Boehnke17, Andrew G. Clark18, Evan E. Eichler19, Greg Gibson20, Jonathan L. Haines21,
Trudy F. C. Mackay22, Steven A. McCarroll23 & Peter M. Visscher24

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and
traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the
remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose
research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics
of complex diseases and enhance its potential to enable effective disease prevention or treatment.

M
any common human diseases and traits are known to
cluster in families and are believed to be influenced by
several genetic and environmental factors, but until
recently the identification of genetic variants contributing

to these ‘complex diseases’ has been slow and arduous1. Genome-wide
association studies (GWAS), in which several hundred thousand to
more than a million single nucleotide polymorphisms (SNPs) are
assayed in thousands of individuals, represent a powerful new tool for
investigating the genetic architecture of complex diseases1,2. In the past
few years, these studies have identified hundreds of genetic variants
associated with such conditions and have provided valuable insights
into the complexities of their genetic architecture3,4.

The genome-wide association (GWA) method represents an
important advance compared to ‘candidate gene’ studies, in which
sample sizes are generally smaller and the variants assayed are limited
to a selected few, often on the basis of imperfect understanding of
biological pathways and often yielding associations that are difficult
to replicate5,6. GWAS are also an important step beyond family-based
linkage studies, in which inheritance patterns are related to several
hundreds to thousands of genomic markers. Despite many clear
successes in single-gene ‘Mendelian’ disorders7,8, the limited success
of linkage studies in complex diseases has been attributed to their low
power and resolution for variants of modest effect9–11.

The underlying rationale for GWAS is the ‘common disease,
common variant’ hypothesis, positing that common diseases are
attributable in part to allelic variants present in more than 1–5% of
the population12–14. They have been facilitated by the development of
commercial ‘SNP chips’ or arrays that capture most, although not all,
common variation in the genome. Although the allelic architecture of
some conditions, notably age-related macular degeneration, for the
most part reflects the contributions of several variants of large effect
(defined loosely here as those increasing disease risk by twofold or
more), most common variants individually or in combination confer
relatively small increments in risk (1.1–1.5-fold) and explain only a
small proportion of heritability—the portion of phenotypic variance
in a population attributable to additive genetic factors3. For example,
at least 40 loci have been associated with human height, a classic
complex trait with an estimated heritability of about 80%, yet they
explain only about 5% of phenotypic variance despite studies of tens
of thousands of people15. Although disease-associated variants occur
more frequently in protein-coding regions than expected from their
representation on genotyping arrays, in which over-representation of
common and functional variants may introduce analytical biases, the
vast majority (.80%) of associated variants fall outside coding
regions, emphasizing the importance of including both coding and
non-coding regions in the search for disease-associated variants3.
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3140, USA. 16Stanford University, Health Research and Policy, Redwood Building, Room T204, 259 Campus Drive, Stanford, California 94305, USA. 17Department of Biostatistics,
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Association Mapping: Missing Heritability

Epistasis as a Potential Reason

Most current analyses neglect interactive effects between loci

Need for approaches for combinatorial association mapping

COMMENT

Why epistasis is important for tackling complex
human disease genetics
Trudy FC Mackay1* and Jason H Moore2

Editorial summary

Epistasis has been dismissed by some as having little
role in the genetic architecture of complex human
disease. The authors argue that this view is the result
of a misconception and explain why exploring epistasis
is likely to be crucial to understanding and predicting
complex disease.

What is epistasis?
The goal of human genetics is to specify the genotype-
phenotype map; that is, to understand how naturally
occurring genetic variants jointly act to modulate disease
risk. In a typical genome scan (for example, a genome-
wide association study), the effect of each variant on the
disease trait of interest is interrogated one at a time. The
effects of all variants are then summed to deduce the
total amount of genetic variation explained by DNA
polymorphisms that affect the trait. This additive model
of inheritance assumes that the effects of individual vari-
ants are independent of the effects of other contributing
loci (the genetic background). Epistasis occurs if the ef-
fect of one variant affecting a complex trait depends on
the genotype of a second variant affecting the trait. For
example, consider two loci (A, B), each with two alleles
(A1, A2, B1, B2). Epistasis would occur, for example, if the
A2A2B2B2 genotype had a high disease risk, but the
eight other possible two-locus genotypes had no effect
on risk. This is only one of many possible forms of
epistatic interactions between two loci.

Is there evidence for epistasis for quantitative
traits?
Many human diseases and disease-related phenotypes
(for example, blood pressure) are quantitative traits. That
is, their variation is due to many interacting genetic loci,

* Correspondence: trudy_mackay@ncsu.edu
1Department of Biological Sciences, North Carolina State University, Raleigh,
NC 27695, USA
Full list of author information is available at the end of the article

and the effects of alleles at these loci are highly sensitive
to the environmental circumstances to which the indivi-
duals are exposed. Quantitative variation in phenotypes
and disease risk must result in part from the perturbation
of highly dynamic, interconnected and non-linear net-
works (for example, developmental, neural, transcrip-
tional, metabolic and biochemical networks) by multiple
genetic variants [1]; thus, gene-gene interactions are
likely. Most evidence for epistatic interactions comes
from studies in model organisms. In yeast, nematodes
and flies, systematic screens for genetic interactions af-
fecting fitness and quantitative traits have revealed the
ubiquity of epistasis [2]. Arguably, though, these inter-
actions could be specific for the large phenotypic effects
of mutations and knockdown by RNA interference, not
the variants with more subtle effects that segregate in
natural populations. However, studies mapping quantita-
tive trait loci (QTLs) in model organisms have often
found QTL ×QTL interactions, even between QTLs that
have no significant effects when these are averaged over
all genetic backgrounds. The ability to transfer genomic
fragments (entire chromosomes or smaller intervals)
between two inbred strains has further revealed perva-
sive epistasis [3]. Finally, the effects of induced mutations
are highly variable in different genetic backgrounds, a
phenomenon that can be used to map genes interacting
with the focal mutation [2]. If epistatic interactions are
so common in ‘simple’ model organisms, it seems un-
reasonable to assume that they do not occur in humans.

Why has epistasis been largely ignored in human
genetics?
Historically, the genetic analysis of quantitative traits has
been purely statistical. The magnitude of variation in a
complex trait phenotype can be partitioned into three
different types of component: additive components,
non-additive components (dominance and epistatic) and
environmental variance components [4]. Most quantita-
tive genetic variation is additive, and this has been used
to dismiss the relevance of epistasis [5]. However,

© 2014 Mackay and Moore; licensee BioMed Central Ltd. The licensee has exclusive rights to distribute this article, in any
medium, for 12 months following its publication. After this time, the article is available under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mackay and Moore Genome Medicine 2014, 6:42
http://genomemedicine.com/content/6/6/42
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Combinatorial Association Mapping
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Computational challenge: Combinatorial explosion of the number of candidate sets

Statistical challenge: Combinatorial explosion of the number of association tests
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Combinatorial Association Mapping

Multiple Hypothesis Testing Problem

What if we consider associations of groups of s SNPs with the phenotype?

This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k ∈ O(f s)), where f is the number of SNPs.

If unaccounted for, α per cent of all SNP sets might be considered significantly
associated by random chance.

It is imperative to control for multiple testing, e.g. the family-wise error rate!

If accounted for, e.g. by Bonferroni correction (
α

k
), we might lose all statistical power.

Long considered unsolvable dilemma
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Combinatorial Association Mapping as a Data Mining Problem
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Feature Selection: Find features that distinguish classes of objects

Pattern Mining: Find higher-order combinations of binary features, so-called patterns,
to distinguish one class from another
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Combinatorial Association Mapping as a Data Mining Problem

Pattern

D is a dataset of n patients. The i-th patient is represented
by a binary vector d(i) ∈ {0, 1}f and a class label yi ∈ {0, 1}.
We choose a subset S of all features F in a dataset: S ⊆ F .

Then an object d(i) includes the pattern S if
∏
t∈S

d (i)(t) = 1,

otherwise not.
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Problem Statement: Significant Pattern Mining

We want to find all subsets S such that there is a statistically significant association

between
∏
t∈S

d (i)(t) and yi for i ∈ {1, . . . , n}, while controlling the family-wise error rate

at level α.
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Significant Pattern Mining

Tarone’s trick

Contingency table for testing enrichment of a pattern in one of two classes

Pattern present Pattern absent

y=0 a n1 − a n1

y=1 x − a n − n1 − x + a n − n1

x n − x n

A popular choice is Fisher’s exact test to test whether the pattern is overrepresented in
one of the two classes.

The common way to compute p-values for Fisher’s exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x , n1, n).
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Significant Pattern Mining

Tarone’s trick

Contingency table for testing enrichment of a pattern in a class

Pattern present Pattern absent

y=0 a n1 − a n1

y=1 x − a n − n1 − x + a n − n1

x n − x n

Tarone (1990) noted that when working with discrete test statistics, e.g. Fisher’s exact
test, there is a minimum p-value that a pattern can achieve.

There are many untestable hypotheses whose minimum p-value is not smaller than
α

k
.

Only the remaining m(k) testable hypotheses can reach significance at all.

One can correct for m(k) instead of k . As often m(k) << k , this greatly improves
statistical power.
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Example: PTC dataset (Helma et al., 2001)
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Significant Pattern Mining

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level
α

k
.

m(k) is a function of k and we require k ≥ m(k) to correct for all testable hypotheses.

Then the optimization problem is

min k

s. t. k ≥ m(k)
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Significant Pattern Mining

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at level
α

k
.

procedure Tarone

k := 1;
while k < m(k) do

k := k + 1;

return k

How to efficiently compute m(k) without running through all O(f s) possible hypotheses?
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Significant Pattern Mining

Data mining challenge

How to efficiently find m(k) without running through all O(f s) possible hypotheses?

Solution: Minimum p-value is determined by the frequency of a pattern.

One can use frequent pattern mining algorithms from Data Mining to enumerate all
patterns that pass a certain p-value threshold (Terada et al., PNAS 2013):

frequent itemset mining(D, θ) enumerates all patterns in a dataset D of frequency at
least θ.
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Significant Pattern Mining

Frequency versus minimum p-value
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Significant Pattern Mining

Tarone’s approach with frequent itemset mining

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level
α

k
.

procedure Tarone(D, α)
k := 1;
while k < m(k) do

k := k + 1;
m(k) := frequent itemset mining(D, φ(

α

k
));

return k

Note: φ(
α

k
) is the minimum frequency of a pattern that is testable at level

α

k
.

For small k, φ(
α

k
) is small. Frequent itemset mining will be extremely expensive!
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

1 How to efficiently find the optimal k? (SDM 2015)

We proposed an efficient search strategy with early termination criterion (when m(k) > k).

2 Patterns are in subset/superset relationships. How to account for this dependence
between tests? (KDD 2015)

We perform Westfall-Young Permutations to take the dependence into account.
By dynamically updating the frequency threshold, we only require 1 single application of
frequent itemset mining even for 10,000 permutations.
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From Significant Pattern Mining to Combinatorial Association Mapping

Questions unanswered in 2014

3 Can we retain efficiency and statistical power when accounting for categorical covariates
such as age and gender? (NIPS 2016)

We extended Tarone’s trick to the Cochran-Mantel-Haenszel-test for stratified contingency
tables.
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Combinatorial Association Mapping for Genetic Heterogeneity Discovery
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Genetic Heterogeneity Discovery
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Genetic Heterogeneity Discovery

Genetic heterogeneity

Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.
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Specific problem studied here: Find a genomic interval such that having

a rare variant,
a recessive genotype, or
a minor allele

in this interval is associated with the disease phenotype.
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Genetic Heterogeneity Discovery

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

Current state of the art: Restrict search to intervals that correspond to genes or exons
(Lee et al., AJHG 2014).

Our goal is to search for intervals that may exhibit genetic heterogeneity, while

allowing for arbitrary start and end points of the intervals,
properly correcting for the inherent multiple testing problem, and
retaining statistical power and computational efficiency.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Genetic Heterogeneity Discovery as a Pattern Mining Problem
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We model the search as a pattern mining problem: Given an interval, an individual
contains a pattern, if it has at least one minor allele in this interval.

An interval is represented by its maximum value. The longer an interval, the more likely
it is that this maximum is 1.

Association is measured by Fisher’s exact test, and we control the family-wise error rate
using Tarone’s method.

Department Biosystems Karsten Borgwardt Roche GPSM, Basel April 18, 2018 26 / 46



FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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If too many individuals have a particular pattern, the corresponding interval is not
testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Pruning criterion: If a pattern is too frequent to be testable, then none of the
superintervals of the corresponding interval is testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Search strategy: We search intervals of increasing length l and prune untestable
superintervals.
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Search strategy: Specifically, for each interval of length l , we prune it if at least one
of its two length l − 1 subintervals is too frequent to be testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

70% (152)

18.9% (41)

6.9% (15)

4.2 % (9)

Novel Intervals

UFE ± 10kb \ LMM ± 10kb

LMM ± 10kb \ UFE ± 10kb 

LMM ± 10kb � UFE ± 10kb 

FAIS detects 217 significant intervals on 21 binary phenotypes from Arabidopsis
thaliana, with 214,051 SNPs and up to 194 lines (Atwell et al., Nature 2010).

70% would have been missed by univariate approaches (UFE and LMM).
Department Biosystems Karsten Borgwardt Roche GPSM, Basel April 18, 2018 32 / 46



Combinatorial Association Mapping: Summary and Outlook

Summary

Significant Pattern Mining was long considered an unsolvable problem.

We have improved Significant Pattern Mining on several levels that allow us to use it for
instances of Combinatorial Association Mapping at a genome-wide scale, e.g. for
Genetic Heterogeneity Discovery.

www.significant-patterns.org

Next challenges

How to detect genetic heterogeneity in biological pathways?

How to control the False Discovery Rate?

How to deal with non-binary features and non-binary phenotypes?
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What’s next?
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Biomedical Software Development
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easyGWAS

We have been developing easygwas.org (Grimm et al., 2017), a cloud platform for
genome-wide association studies (1362 users as of April 11, 2018):
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Biomarker Discovery for Sepsis
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Personalized Swiss Sepsis Study

Consortium of 22 research labs and 5 university hospitals in Switzerland
Goal: Predict sepsis and sepsis-related mortality
Approach: Integrate clinical data and molecular data for joint biomarker discovery

Duration:
3 years
(2018-2021)

Total funding:
5.3 Million CHF
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Predicting Sepsis

Background: What is sepsis and why is it relevant?

Sepsis is a life-threatening organ dysfunction, caused by a dysregulated host response to
infection (Singer et al., 2016).

Identification of a bacterial species in blood still takes between 24h and 48h after blood
sampling (Osthoff et al., 2017).

From onset each hour of delayed effective antibiotic treatment increases mortality (Ferrer et

al., 2014).

→ The first hours of sepsis are of critical importance.
→ Currently, when sepsis is detected, organ damage has already progressed.
→ Detecting and treating sepsis earlier and better identifying high-risk subgroups

could be of highest clinical impact.
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Predicting Sepsis

Dataset: MIMIC (https://mimic.physionet.org)

Labels:

Case if sepsis-3 criteria (Singer et al., 2016) fulfilled during ICU stay (at least 4 hours after
admission) using the notion ’suspicion of infection’ as defined in (Seymour et al., 2016)

Control if no suspicion of infection (at least not during ICU stay and the 2 preceding weeks)
SOFA increase evaluated as the maximum SOFA of the 3d window around suspicion of
infection (–2 to +1 days) compared to baseline SOFA (3d window before that).

Features: In-ICU time series of heart rate, systolic blood pressure, and respiratory rate.

Sample size: 355 case ICU stays, 21,079 controls (sampling 355)

Exclusion criteria: Age < 15, CareVue logging (insufficient detail), chartvalues or
in/out-time unavailable.
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Predicting Sepsis
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We detect patterns in respiratory rate time series that are statistically significantly
associated with sepsis (Bock et al., ISMB 2018 - in press).
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Data Mining in the Life Sciences

Department Biosystems Karsten Borgwardt Roche GPSM, Basel April 18, 2018 42 / 46



Data Mining in Genetics, Medicine and the Life Sciences

Outlook

Automation, biomarker discovery, and biomedical data management will remain key
research topics.

Data growth in three dimensions will pose extreme new challenges in Data Mining in
Genetics and Medicine:

Population-scale datasets of individuals
Life-long recordings of health state
Highest-resolution information of the health state

How to mine (handle and use) this data?

Many branches of the Life Sciences face very similar or analogous problems.
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Genetics and Medicine:

Population-scale datasets of individuals
Life-long recordings of health state
Highest-resolution information of the health state

How to mine (handle and use) this data?

Many branches of the Life Sciences face very similar or analogous problems.

Plenty of opportunities for Data Mining in the Life Sciences
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Thank you

Marie-Curie-Initial Training Network for ‘Machine Learning for Personalized Medicine’
(mlpm.eu, 2013-2016)

Starting Grant (ERC-Backup Scheme of the SNSF)

Alfried-Krupp-Award for Young Professors

SPHN-PHRT Driver Project ‘Personalized Swiss Sepsis Study’

http://www.bsse.ethz.ch/mlcb
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