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Machine Learning in Medicine

Key Topics

m Automation of diagnoses
Original Investigation
December 12, 2017
Diagnostic Assessment of Deep Learning
Algorithms for Detection of Lymph Node
Metastases in Women With Breast Cancer

Babak Ehteshami Bejnordi, MS'; Mitko Veta, PhD2; Paul Johannes van Diest, MD, PhD3; et al
» Author Affiliations | Article Information

JAMA. 2017;318(22):2199-2210. doi:10.1001/jama.2017.14585

Department Biosystems Karsten Borgwardt Google Research, Ziirich | February 27, 2018 | 2 / 40



Machine Learning in Medicine
Key Topics

m Automation of diagnoses

m Biomarker discovery
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Machine learning of neural
representations of suicide and emotion
concepts identifies suicidal youth

Marcel Adam Just , Lisa Pan, Vladimir L. Cherkassky, Dana L. McMakin, Christine Cha, Matthew K.
Nock & David Brent

Nature Human Behaviour 1,911-919 (2017) Received: 06 February 2017
doi:10.1038/541562-017-0234-y Accepted: 04 October 2017
Download Citation Published online: 30 October 2017
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Machine Learning in Medicine

Key Topics

m Automation of diagnoses

Roche to buy Flatiron Health for $1.9 billion to expand cancer care ...
__ Reuters - 15.02.2018

/ Roche to buy Flatiron Health for $1.9 billion to expand cancer care portfolio ... S)

said on Thursday it would buy the rest of U.S. cancer data company Flatiron Health

for $1.9 billion to speed development of cancer medicines and support its efforts to ...

Privately held Flatiron, backed by Alphabet Inc (GOOGL.

m Biomarker discovery

m Biomedical data management
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Machine Learning in Medicine
Key Topics

m Automation of diagnoses

m Biomarker discovery

Algorithm development
Applications with Biomedical
Researchers

m Biomedical data management
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Machine Learning in Medicine

Key Topics

m Automation of diagnoses

m Biomarker discovery

Algorithm development
Applications with Biomedical
Researchers

m Biomedical data management

Software development for
Biomedical Researchers
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Algorithm Development for Biomarker Discovery
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Association Mapping: Mapping Phenotypes to the Genome
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A genome-wide association study (GWAS) examines whether variation in the genome (in
form of single nucleotide polymorphisms, SNPs) correlates with variation in the

phenotype.
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Association Mapping: Missing Heritability

m Since 2001; More than 2000 new disease loci due to GWAS

m Problem: Phenotypic variance explained still disappointingly low

Vol 461(8 October 2009|d0i:10.1038/nature08494 nature

REVIEWS

Finding the missing heritability of complex
diseases

Teri A. Manolio', Francis S. Collins?, Nancy J. Cox’, David B. Goldstein®, Lucia A. Hindorff’, David J. Hunter®,
Mark I. McCarthy’, Erin M. Ramos®, Lon R. Cardon®, Aravinda Chakravarti’, Judy H. Cho'®, Alan E. Guttmacher!,
Augustine Kong'', Leonid Kruglyak'?, Elaine Mardis'?, Charles N. Rotimi'*, Montgomery Slatkin'®, David Valle®,
Alice S. Whittemore'®, Michael Boehnke'”, Andrew G. Clark'®, EvanE. Eichler'®, Greg Gibson®”, Jonathan L. Haines>!,
Trudy F. C. Mackay®?, Steven A. McCarroll**> & Peter M. Visscher”*

id iation studies have identified hundreds of genetic variants associated with complex human diseases and
traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
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Association Mapping: Missing Heritability
Epistasis as a Potential Reason

m Most current analyses neglect interactive effects between loci

m Need for approaches for combinatorial association mapping

Mackay and Moore Genome Medicine 2014, 6:42

http://genomemedicine.com/content/6/6/42 q Genome Medicine

COMMENT

Why epistasis is important for tackling complex
human disease genetics

Trudy FC Mackay'™ and Jason H Moore?

and the effects of alleles at these loci are highly sensitive

Editorial summai R N . o
i to the environmental circumstances to which the indivi-

Epistasis has been dismissed by some as having little duals are exposed. Quantitative variation in phenotypes
role in the genetic architecture of complex human and disease risk must result in part from the perturbation
disease. The authors argue that this view is the result of highly dynamic, interconnected and non-linear net-
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Combinatorial Association Mapping
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m Computational challenge: Combinatorial explosion of the number of candidate sets

m Statistical challenge: Combinatorial explosion of the number of association tests
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Combinatorial Association Mapping

Multiple Hypothesis Testing Problem

What if we consider associations of groups of s SNPs with the phenotype?

This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k € O(f®)), where f is the number of SNPs.

If unaccounted for, a per cent of all SNP sets might be considered significantly
associated by random chance.

It is imperative to control for multiple testing, e.g. the family-wise error rate!

. . Q@ : -
If accounted for, e.g. by Bonferroni correction (E) we might lose all statistical power.

Department Biosystems Karsten Borgwardt Google Research, Ziirich | February 27, 2018 | 8 / 40



Combinatorial Association Mapping

Multiple Hypothesis Testing Problem

What if we consider associations of groups of s SNPs with the phenotype?

This leads to an enormous multiple testing problem: Any of the k SNP sets would
correspond to a hypothesis that is tested (k € O(f®)), where f is the number of SNPs.

If unaccounted for, a per cent of all SNP sets might be considered significantly
associated by random chance.

It is imperative to control for multiple testing, e.g. the family-wise error rate!
. e . -
If accounted for, e.g. by Bonferroni correction (E) we might lose all statistical power.

Long considered unsolvable dilemma
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Combinatorial Association Mapping as a Data Mining Problem
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m Feature Selection: Find features that distinguish classes of objects
m Pattern Mining: Find higher-order combinations of binary features, so-called patterns,
to distinguish one class from another
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Combinatorial Association Mapping as a Data Mining Problem
Pattern

m D is a dataset of n patients. The /-th patient is represented
by a binary vector d() € {0,1}" and a class label y; € {0,1}.
m We choose a subset S of all features F in a dataset: S C F.

Cor

m Then an object d) includes the pattern S if H d(t) =1,

. teS
otherwise not.

Problem Statement: Significant Pattern Mining

m We want to find all subsets S such that there is a statistically significant association

between H d)(t) and y; for i € {1,...,n}, while controlling the family-wise error rate
teS

at level a.
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Significant Pattern Mining

Tarone's trick

m Contingency table for testing enrichment of a pattern in one of two classes

Pattern present | Pattern absent
y=0 a ng—a m
y=1 X—a n—n—x4+aln—m
X n—x n

m A popular choice is Fisher's exact test to test whether the pattern is overrepresented in
one of the two classes.

m The common way to compute p-values for Fisher's exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x, n1, n).
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Significant Pattern Mining

Tarone's trick

m Contingency table for testing enrichment of a pattern in a class

Pattern present | Pattern absent
y=0 a ni—a m
y=1 X—a n—m-—x+aln—m
X n—x n

m Tarone (1990) noted that when working with discrete test statistics, e.g. Fisher's exact
test, there is a minimum p-value that a pattern can achieve.

. . @
m There are many untestable hypotheses whose minimum p-value is not smaller than

m Only the remaining m(k) testable hypotheses can reach significance at all.
m One can correct for m(k) instead of k. As often m(k) << k, this greatly improves

statistical power.
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Example: PTC dataset (Helma et al., 2001)
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Significant Pattern Mining

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at significance level %.

m m(k) is a function of k and we require kK > m(k) to correct for all testable hypotheses.

m Then the optimization problem is

min k
s. t. k> m(k)
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Significant Pattern Mining

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at level %.

procedure Tarone

k=1

while k < m(k) do
k=k+1;

return k
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Significant Pattern Mining

Tarone's approach (1990)

m Assume k is the number of tests that we correct for.

m m(k) is the number of testable hypotheses at level %.

procedure Tarone

k=1

while k < m(k) do
k=k+1;

return k

m How to efficiently compute m(k) without running through all O(f®) possible hypotheses?
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Significant Pattern Mining

Data mining challenge

m How to efficiently find m(k) without running through all O(f*®) possible hypotheses?
m Solution: Minimum p-value is determined by the frequency of a pattern.

m One can use frequent pattern mining algorithms from Data Mining to enumerate all
patterns that pass a certain p-value threshold (terada et al., PNAS 2013):

m frequent itemset mining(D, ) enumerates all patterns in a dataset D of frequency at
least 6.
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Significant Pattern Mining

m Frequency versus minimum p-value

Minimum attainable P-value
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Significant Pattern Mining
Tarone's approach with frequent itemset mining

m Assume k is the number of tests that we correct for.
: N o
m m(k) is the number of testable hypotheses at significance level X

procedure Tarone (D, o)
k=1
while k < m(k) do
ki=k+1; o
m(k) := frequent itemset mining(D,gb(?));

return k
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Significant Pattern Mining
Tarone's approach with frequent itemset mining

m Assume k is the number of tests that we correct for.
m m(k) is the number of testable hypotheses at significance level %.
procedure Tarone (D, a)
k=1
while k < m(k) do
ki=k+1; o
m(k) := frequent itemset mining(D,gb(?));

return k

o, . . . «
m Note: ¢(E) is the minimum frequency of a pattern that is testable at level e
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Significant Pattern Mining
Tarone's approach with frequent itemset mining

m Assume k is the number of tests that we correct for.
: N o
m m(k) is the number of testable hypotheses at significance level X

procedure Tarone (D, o)
k=1
while k < m(k) do
ki=k+1; o
m(k) := frequent itemset mining(D,gb(?));

return k

o, . . . «
m Note: ¢(E) is the minimum frequency of a pattern that is testable at level rE

a, . . .. . .
m For small k, ¢(;) is small. Frequent itemset mining will be extremely expensive!
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Starting Grant: Significant Pattern Mining

Contributions

How to efficiently find the optimal k7 (spm 2015)

Patterns are in subset/superset relationships. How to account for this dependence
between tests? (kop 2015)

Can we retain efficiency and statistical power when accounting for categorical covariates
such as age and gender? (nips 2016)

Can we develop new association mapping approaches based on Tarone’s trick? (sms 2015,

OUP Bioinformatics 2017)
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Starting Grant: Significant Pattern Mining

Contributions

How to efficiently find the optimal k7 (spm 2015)

Patterns are in subset/superset relationships. How to account for this dependence
between tests? (kob 2015)

Can we retain efficiency and statistical power when accounting for categorical covariates
such as age and gender? (nips 2016)

Can we develop new association mapping approaches based on Tarone’s trick? (swms 2015,

OUP Bioinformatics 2017)
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Applications of Combinatorial Association Mapping:
Genetic Heterogeneity Discovery
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Genetic heterogeneity

m Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.

m The correlation between each individual gene or variant and the phenotype may be too
weak to be detected, but the group may have have a strong correlation.

m The only current way to consider genetic heterogeneity is to consider fixed groups of
variants. Genome-wide scans cause tremendous computational and statistical problems.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

m Our goal is to search for intervals that may exhibit genetic heterogeneity, while
m allowing for arbitrary start and end points of the intervals,
m properly correcting for the inherent multiple testing problem, and
m retaining statistical power and computational efficiency.
m We model the search as a pattern mining problem: Given an interval, an individual
contains a pattern, if it has at least one minor allele in this interval.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Finding trait-associated genome segments with at least one minor allele
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m An interval is represented by its maximum value. The longer an interval, the more likely
it is that this maximum is 1.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

m Search strategy: We search intervals of increasing length and prune untestable
superintervals.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

Minimum attainable p-value of
.
o
.
.
o
X
.

m Pruning criterion 1: If too many individuals have a particular pattern, the
corresponding interval is not testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Pruning criterion 2: If a pattern is too frequent to be testable, then none of the

superintervals of the corresponding interval is testable.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity
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m Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding Intervals That Exhibit Genetic Heterogeneity

70% (152)
Novel Intervals

UFE £ 10kb \ LMM % 10kb
[ LMM £ 10kb \ UFE * 10kb
LMM £ 10kb ~ UFE * 10kb
18.9% (41)

6.9% (15)

m Most significant intervals would have been missed by univariate approaches (UFE and
LMM) on 21 binary phenotypes from Arabidopsis thaliana (Atwell et al., Nature 2010).
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FAIS: Conclusions and Outlook

Conclusions

m We can search for intervals that may exhibit genetic heterogeneity

m efficiently,
m without pre-defining the boundaries of intervals,
m while properly correcting for multiple testing.
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FAIS: Conclusions and Outlook

Conclusions

m We can search for intervals that may exhibit genetic heterogeneity

m efficiently,
m without pre-defining the boundaries of intervals,
m while properly correcting for multiple testing.

Next steps: Genetic heterogeneity discovery

m How to account for covariates like age and gender?

m Solution for categorial covariates (NIPs 2016, Bioinformatics 2017)
m Study in collaboration with the COPDGene Consortium to detect intervals associated with
Chronic Obstructive Pulmonary Disease (Bioinformatics 2017).
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Biomedical Software Development
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easyGWAS

m We have been developing easygwas.org (Grimm et al., 2017), a cloud platform for

genome-wide association studies (1248 users as of February 23, 2018):
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easygwas.org

What's next?
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Personalized Swiss Sepsis Study

m Consortium of 22 research labs and 5 university hospitals in Switzerland

m Goal: Predict sepsis and sepsis-related mortality
m Approach: Integrate clinical data and molecular data for joint biomarker discovery

Adrian Egli Karsten Borgwardt
< AN PI SPHN Pl PHRT
‘{ Clinical Microbiology, University Hospital Basel MLCB, D-BSSE, ETH Ziirich
ETHzirich
\I |Universitélsspital
B Ef!!wfh
R St v m Duration:

F"'#

3 years
(2018-2021)

m Total funding:
5.3 Million CHF
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Machine Learning in Medicine

Summary

m At the heart of Machine Learning in Medicine is the development of novel algorithms for
biomarker discovery, such as the Combinatorial Association Mapping approaches
presented here.

m The high dimensionality of the problem leads to an enormous computational and
statistical challenge.

m Solving both problems at the same time was largely unachieved.

m We have developed several Significant Pattern Mining approaches that achieve both.

www.significant-patterns.org
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www.significant-patterns.org

Machine Learning in Medicine

Outlook

m Medicine and the Life Sciences promise to become a central application domain for
Machine Learning.

m The number of possible topics is vast, reaches from

m algorithm development,
m collaborations with biomedical researchers to
m software development.

www.mlpm.eu
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www.mlpm.eu

Thank you

» L | epree

il

m Marie-Curie-Initial Training Network for ‘Machine Learning for Personalized Medicine’
(mlpm.eu, 2013-2016)

m Starting Grant (ERC-Backup Scheme of the SNSF)

m Alfried-Krupp-Award for Young Professors

m SPHN-PHRT Driver Project ‘Personalized Swiss Sepsis Study’

http://www.bsse.ethz.ch/mlcb
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 http://www.bsse.ethz.ch/mlcb
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