Turbo für Biokraftstoff - Max-Planck-Wissenschaftler schaffen die Grundlage, damit Pflanzen wirkungsvoller Kohlendioxid binden können

15. Juni 2007

Biokraftstoffe liefern Energie und schonen das Klima. Doch um alleine den immensen Treibstoffbedarf mit Pflanzen zu decken, gedeihen diese nicht schnell genug. Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried haben jetzt die Grundlagen geschaffen, um ihr Wachstum zu beschleunigen. Sie haben ein Enzym entdeckt, das Rubisco zusammensetzt. Rubisco, ebenfalls ein Enzym, hilft Pflanzen Kohlendioxid in Glukose umzuwandeln. Es arbeitet aber nicht besonders effektiv. Jetzt können die Biochemiker möglicherweise so in seinen Bau eingreifen, dass es das Treibhausgas wirkungsvoller bindet. (Cell, 15. Juni 2007)

Das Enzym Rubisco, kurz für Ribulose 1,5 bisphosphatcarboxylase/oxygenase, ist das häufigste Protein der Natur. Es bindet Kohlendioxid aus der Atmosphäre und ist ein wichtiger Teil der Maschierie, mit der Pflanzen und Blaualgen Glukose aufbauen - den wichtigsten Baustein für Biomasse. Rubisco treibt also das Pflanzenwachstum an. Doch nur in drei von vier Reaktionen bindet der Biokatalysator tatsächlich Kohlendioxid in Zuckermolekülen. Das würden Biochemiker gerne ändern.

Die Wissenschaftler vom Max-Planck-Institut für Biochemie haben jetzt einen Ansatzpunkt dafür geliefert, indem sie einen entscheidenden Schritt im Bau von Rubisco aufgeklärt haben. Funktionsfähig wird das Enzym nämlich erst, wenn Chaperone es zu seiner komplexen räumlichen Struktur gefaltet haben. "Wir haben entdeckt, dass an der Biogenese von Rubisco mindestens ein bisher unbekanntes Chaperon beteiligt ist", erläutert Manajit Hayer-Hartl, die das Forscherteam am Martinsrieder Max-Planck-Institut geleitet hat. Das Enzym heißt RbcX und hilft, die Untereinheiten des Rubisco-Moleküls zu einem funktionierenden Enzym zusammenzufügen.

Den biochemischen Aufbauhelfer haben die Wissenschaftler zunächst in reiner Form hergestellt. Anschließend haben sie seine Struktur und seine Funktion untersucht. Die Bereiche des Enzyms, die am Aufbau von Rubisco beteiligt sind, haben sie zudem sehr detailliert analysiert. Auf diese Weise haben sie die einzelnen Schritte der Rubisco-Synthese entschlüsselt. In höheren Pflanzen besteht der Rubisco-Komplex aus acht großen und acht kleinen jeweils identischen Untereinheiten. Damit sie richtig zusammenfinden, wirkt das neu entdeckte RbcX-Chaperon als Partnervermittler. Acht dieser Enzyme führen zunächst die acht großen Bausteine zusammen und verknüpfen sie. Im nächsten Schritt ersetzen die acht kleinen Rubisco-Untereinheiten die RbcX-Moleküle - und das Rubisco-Enzym ist einsatzbereit.

"Wir hoffen, dass mit der Entdeckung des RbcX-Chaperons die gentechnische Optimierung des Rubisco-Enzyms gelingen wird", sagt Ulrich Hartl, in dessen Abteilung das Wissenschaftlerteam die Rubisco-Synthese aufklärte. Das versuchen Biochemiker seit Jahren. "Bisher sind diese Bemühungen gescheitert, weil wir das Enzym nicht mit gentechnisch veränderten Organismen herstellen konnten", sagt Hartl: "Jetzt können wir hoffentlich bald Pflanzen züchten, die auch ohne Düngemitteln schneller wachsen." Das könnte ein wichtiger Beitrag sein, um alternative Energiequellen anzuzapfen. Kraftwerke und Motoren, die mit Biomasse oder Bioethanol gefeuert werden, blasen nämlich nur so viel Kohlendioxid in die Atmosphäre, wie die Pflanzen vorher gebunden haben. Ihre Kohlendioxid-Bilanz ist also viel günstiger als die fossiler Brennstoffe. [hri/PH]

Originalveröffentlichung:

Sandra Saschenbrecker, Andreas Bracher, Karnam Vasudeva Rao, Bharathi Vasudeva Rao, F. Ulrich Hartl und Manajit Hayer-Hartl: Structure and Function of RbcX, an Assembly Chaperone for Hexadecameric Rubisco. Cell, 15. Juni 2007 (DOI 10.1016/j.cell.2007.04025).

Kontakt:

Prof. Dr. F. Ulrich Hartl

Max-Planck-Institut für Biochemie, Martinsried

Tel.: 089 8578-2233

Fax: 089 8578-2211

E-mail: uhartl@biochem.mpg.de

Zur Redakteursansicht