Kontakt

Prof. Dr. Petra Schwille
Prof. Dr. Petra Schwille
Direktorin

MPI für Biochemie, Am Klopferspitz 18, 82152 Martinsried

www.biochem.mpg.de/schwille

Zelluläre und molekulare Biophysik

Dr. Christiane Menzfeld
Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Telefon:+49 89 8578-2824
E-Mail:pr@...

MPI für Biochemie, Am Klopferspitz 18, 82152 Martinsried

www.biochem.mpg.de

Robuste Musterbildung

17. April 2018

Lebenswichtige Prozesse wie die Zellteilung müssen unter diversen zellulären Bedingungen stabil sein. Die richtige Verteilung von Proteinen in der Zelle ist hierbei entscheidend.  Forscher vom Max-Planck-Institut für Biochemie in Martinsried haben jetzt in Kooperation mit Kollegen der Ludwig-Maximilians-Universität (LMU) in München untersucht, welche Mechanismen die Musterbildung unempfindlich gegen Konzentrationsänderungen der Proteine machen. Dafür verwendeten die Wissenschaftler einer Kombination aus mathematischer Modellierung und einem experimentellen, minimalen Ansatz im Labor um die grundlegenden Prinzipien zu verstehen.  Von den Ergebnissen berichten die Wissenschaftler im Fachmagazin PNAS.

<p>Experimentell beobachtetes Protein-Muster</p> Bild vergrößern

Experimentell beobachtetes Protein-Muster

Viele lebenswichtige Prozesse werden mithilfe biologischer Muster gesteuert. Bei der Zellteilung etwa legt die Verteilung bestimmter Proteine fest, an welcher Stelle die Mutterzelle abgeschnürt wird. Damit das Überleben der Zelle gesichert ist, müssen diese Prozesse auch bei Störungen – etwa durch schwankende Proteinkonzentrationen – sehr stabil ablaufen. Welche Mechanismen diese Stabilität sicherstellen, haben nun Petra Schwille, Leiterin der Abteilung „Zelluläre und molekulare Biophysik“ am Max-Planck-Institut für Biochemie in Zusammenarbeit mit Erwin Frey, Leiter des Lehrstuhls „Statistical and Biological Physics“ an der LMU, untersucht.

Ein wichtiges Modell für die biologische Musterbildung ist das Min-System, mit dem das stäbchenförmige Bakterium Escherichia coli festlegt, an welcher Stelle die Zelle geteilt wird. Die sogenannten Min-Proteine pendeln dabei zwischen den beiden Enden der Zelle hin und her und erzeugen ein Proteinmuster, das die Teilung in der Nähe der Zellpole verhindert, aber nicht in der Mitte der Zelle. Angetrieben wird der Pendelverkehr durch ein komplexes Zusammenspiel der Proteine MinD und MinE: MinE aktiviert an die Zellmembran gebundenes MinD, das sich daraufhin löst und durch die Zelle diffundiert, bis es erneut bindet. „Bisherige mathematische Modelle haben immer ergeben, dass der Pendelverkehr nur funktioniert, wenn weniger MinE als MinD vorhanden ist“, sagt Jonas Denk, Doktorand in Freys Team. Reale Zellen enthalten allerdings normalerweise etwa gleich viel MinE und MinD, und experimentelle Studien zeigten, dass die Musterbildung sogar dann noch gelingt, wenn die MinE-Konzentration deutlich erhöht wird.

Diesen scheinbaren Widerspruch konnten die Wissenschaftler nun auflösen, indem sie eine Konformationsänderung von MinE in ihr Modell einbezogen: Aus früheren Untersuchungen war bereits bekannt, dass MinE in zwei Formen vorkommt, einer offenen und einer geschlossenen. Die geschlossene Form von MinE hat nur eine sehr geringe Affinität zu MinD und bindet deswegen nur mit einer geringen Wahrscheinlichkeit. Ist MinE allerdings erst einmal an MinD gebunden, wechselt es in die offene Form, die hochaffin an MinD bindet. Dabei wird es aktiviert und löst sowohl sich selbst als auch MinD von der Membran. Die Wissenschaftler schlagen vor, dass das aktivierte MinE danach noch für kurze Zeit seine offene Form behält und somit direkt zum nächsten membrangebundenen MinD „springen“ kann – trifft es nicht schnell genug auf einen Reaktionspartner, wechselt es aber wieder in die geschlossene Form. „Dieses Umschalten zwischen den beiden Konformationen ist entscheidend für die Robustheit der Musterbildung und macht das System selbst gegenüber stark erhöhten MinE-Konzentrationen unempfindlich, wie unsere Simulationen zeigten“, sagt Frey. In-vitro-Experimente von Simon Kretschmer aus Schwilles Team bestätigten diese Ergebnisse.

Das neue Modell ermöglicht über das Min-System hinaus grundlegend neue Einsichten in die Mechanismen, mit denen die Zelle die biologische Musterbildung reguliert. Die Robustheit gegenüber Konzentrationsänderungen von Proteinen könnte nach Ansicht der Wissenschaftler auch in evolutiver Hinsicht vorteilhaft sein, denn sie eröffnet der Zelle mehr Flexibilität: Durch mehr Spielraum bei der Regulation von Proteinmustern, bleiben lebenswichtige Prozesse auch unter veränderten Bedingungen stabil. [göd]

Originalpublikation
J.Denk*, S. Kretschmer*, J. Halatek*, C. Hartl, P. Schwille and E. Frey: MinE conformational switching confers robustness on self-organized Min protein patterns, PNAS April 2018 (*trugen zu gleichen Teilen bei)

 
loading content
Zur Redakteursansicht